Machine-Learning-Based Method for Content-Adaptive Video Encoding

S. Zvezdakov, Denis Kondranin, D. Vatolin
{"title":"Machine-Learning-Based Method for Content-Adaptive Video Encoding","authors":"S. Zvezdakov, Denis Kondranin, D. Vatolin","doi":"10.1109/PCS50896.2021.9477507","DOIUrl":null,"url":null,"abstract":"Video codecs have several dozen parameters that subtly affect the encoding rate, quality and size of the compressed video. Codec developers, as a rule, provide standard presets that on average yield acceptable performance for all videos, but for a given video, certain parameters may yield more efficient encoding. In this paper, we propose a new approach to predicting video codec presets to increase compression efficiency. Our effort involved collecting a new representative video-sequence dataset from Vimeo.com. An experimental evaluation showed relative bitrate decreases of 17.8% and 7.9%, respectively for the x264 and x265 codecs with standard options, all while maintaining quality and speed. Comparison with other methods revealed significantly faster automatic preset selection with a comparable improvement in results. Finally, our proposed content-adaptive method predicts presets that archive better performance than codec-developer presets from MSU Codec Comparison 2020 [1].","PeriodicalId":132025,"journal":{"name":"2021 Picture Coding Symposium (PCS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS50896.2021.9477507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Video codecs have several dozen parameters that subtly affect the encoding rate, quality and size of the compressed video. Codec developers, as a rule, provide standard presets that on average yield acceptable performance for all videos, but for a given video, certain parameters may yield more efficient encoding. In this paper, we propose a new approach to predicting video codec presets to increase compression efficiency. Our effort involved collecting a new representative video-sequence dataset from Vimeo.com. An experimental evaluation showed relative bitrate decreases of 17.8% and 7.9%, respectively for the x264 and x265 codecs with standard options, all while maintaining quality and speed. Comparison with other methods revealed significantly faster automatic preset selection with a comparable improvement in results. Finally, our proposed content-adaptive method predicts presets that archive better performance than codec-developer presets from MSU Codec Comparison 2020 [1].
基于机器学习的内容自适应视频编码方法
视频编解码器有几十个参数,这些参数会微妙地影响压缩视频的编码速率、质量和大小。编解码器开发人员通常会提供标准的预设,这些预设对所有视频的平均性能都是可以接受的,但对于给定的视频,某些参数可能会产生更有效的编码。本文提出了一种预测视频编解码器预置的新方法,以提高压缩效率。我们的工作包括从Vimeo.com上收集一个新的代表性视频序列数据集。实验评估表明,使用标准选项的x264和x265编解码器,在保持质量和速度的同时,相对比特率分别降低了17.8%和7.9%。与其他方法的比较表明,自动预设选择速度明显加快,结果也有相当的改善。最后,我们提出的内容自适应方法预测的预设比MSU Codec Comparison 2020[1]中的编解码器开发人员预设存档的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信