Changliu Liu, Chung-Yen Lin, Yizhou Wang, M. Tomizuka
{"title":"Convex feasible set algorithm for constrained trajectory smoothing","authors":"Changliu Liu, Chung-Yen Lin, Yizhou Wang, M. Tomizuka","doi":"10.23919/ACC.2017.7963597","DOIUrl":null,"url":null,"abstract":"Trajectory smoothing is an important step in robot motion planning, where optimization methods are usually employed. However, the optimization problem for trajectory smoothing in a clustered environment is highly non-convex, and is hard to solve in real time using conventional non-convex optimization solvers. This paper discusses a fast online optimization algorithm for trajectory smoothing, which transforms the original non-convex problem to a convex problem so that it can be solved efficiently online. The performance of the algorithm is illustrated in various cases, and is compared to that of conventional sequential quadratic programming (SQP). It is shown that the computation time is greatly reduced using the proposed algorithm.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Trajectory smoothing is an important step in robot motion planning, where optimization methods are usually employed. However, the optimization problem for trajectory smoothing in a clustered environment is highly non-convex, and is hard to solve in real time using conventional non-convex optimization solvers. This paper discusses a fast online optimization algorithm for trajectory smoothing, which transforms the original non-convex problem to a convex problem so that it can be solved efficiently online. The performance of the algorithm is illustrated in various cases, and is compared to that of conventional sequential quadratic programming (SQP). It is shown that the computation time is greatly reduced using the proposed algorithm.