A fast state-of-charge estimation algorithm for LiFePO4 batteries utilizing extended Kalman filter

C. Chun, Gab-Su Seo, B. Cho, Jonghoon Kim
{"title":"A fast state-of-charge estimation algorithm for LiFePO4 batteries utilizing extended Kalman filter","authors":"C. Chun, Gab-Su Seo, B. Cho, Jonghoon Kim","doi":"10.1109/ECCE-ASIA.2013.6579214","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast state-of-charge (SOC) estimation algorithm for LiFePO4 batteries utilizing an extended Kalman filter (EKF). The proposed algorithm controls error covariance to expedite the SOC convergence against an initial error and alleviate undesired SOC fluctuation with a simplified hysteresis model. The new model not only well describes OCV hysteresis of the battery, but also requires less resources by linearization. To validate the performance of the proposed estimation method, a scaled-down hybrid electric vehicle (HEV) current profile is used for a 14Ah LiFePO4 battery cell. The experimental results verify the improved estimation speed as well as the feasibility of the proposed linearized model.","PeriodicalId":301487,"journal":{"name":"2013 IEEE ECCE Asia Downunder","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE ECCE Asia Downunder","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE-ASIA.2013.6579214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a fast state-of-charge (SOC) estimation algorithm for LiFePO4 batteries utilizing an extended Kalman filter (EKF). The proposed algorithm controls error covariance to expedite the SOC convergence against an initial error and alleviate undesired SOC fluctuation with a simplified hysteresis model. The new model not only well describes OCV hysteresis of the battery, but also requires less resources by linearization. To validate the performance of the proposed estimation method, a scaled-down hybrid electric vehicle (HEV) current profile is used for a 14Ah LiFePO4 battery cell. The experimental results verify the improved estimation speed as well as the feasibility of the proposed linearized model.
基于扩展卡尔曼滤波的LiFePO4电池电量状态快速估计算法
本文提出了一种基于扩展卡尔曼滤波(EKF)的LiFePO4电池荷电状态(SOC)快速估计算法。该算法通过控制误差协方差,加快了SOC对初始误差的收敛速度,并通过简化的滞后模型减轻了SOC的波动。该模型不仅能很好地描述电池的OCV滞回,而且线性化所需的资源较少。为了验证所提出的估计方法的性能,使用了14Ah LiFePO4电池的缩小混合动力汽车(HEV)电流曲线。实验结果验证了估计速度的提高以及所提出的线性化模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信