{"title":"Load balancing in dynamic networks","authors":"Robert Elsässer, B. Monien, Stefan Schamberger","doi":"10.1109/ISPAN.2004.1300480","DOIUrl":null,"url":null,"abstract":"Efficient load balancing algorithms are the key to many efficient parallel applications. Until now, research in this area mainly focused on static networks. However, observations show that diffusive algorithms, originally designed for these networks, can also be applied in nonstatic scenarios. In this paper we prove that the general diffusion scheme can be deployed on dynamic networks and show that its convergence rate depends on the average value of the quotient of the second smallest eigenvalue and the maximum vertex degree of the networks occurring during the iterations. In the presented experiments we illustrate that even if communication links of static networks fail with high probability, load can still be balanced quite efficiently. Simulating diffusion on ad-hoc networks we demonstrate that diffusive schemes provide a reliable and efficient load balancing strategy also in mobile environments.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Efficient load balancing algorithms are the key to many efficient parallel applications. Until now, research in this area mainly focused on static networks. However, observations show that diffusive algorithms, originally designed for these networks, can also be applied in nonstatic scenarios. In this paper we prove that the general diffusion scheme can be deployed on dynamic networks and show that its convergence rate depends on the average value of the quotient of the second smallest eigenvalue and the maximum vertex degree of the networks occurring during the iterations. In the presented experiments we illustrate that even if communication links of static networks fail with high probability, load can still be balanced quite efficiently. Simulating diffusion on ad-hoc networks we demonstrate that diffusive schemes provide a reliable and efficient load balancing strategy also in mobile environments.