Lower Bounds of the Allowable Motions of One N-Dimensional Ellipsoid Contained in Another

Sipu Ruan, G. Chirikjian, Jianzhong Ding
{"title":"Lower Bounds of the Allowable Motions of One N-Dimensional Ellipsoid Contained in Another","authors":"Sipu Ruan, G. Chirikjian, Jianzhong Ding","doi":"10.1115/DETC2018-85851","DOIUrl":null,"url":null,"abstract":"This paper studies the representations of a subset of the allowable motions for an N-dimensional ellipsoid inside another slightly larger ellipsoid without collision based on the idea of the Kinematics of Containment. As an extension to the previous work on the closed-form lower bounds, this paper proposes another two lower bounds based on the first-order algebraic condition of containment and the closed-form Minkowski difference between two ellipsoids respectively. Querying processes for a specific configuration of the moving ellipsoid and the calculations of the volume of the proposed lower bounds in configuration space (C-space) are introduced. Examples for the proposed lower bounds in 2D and 3D Euclidean space are implemented and the corresponding motion volumes in C-space are compared with different shapes of the ellipsoids. Finally a case study of the application on automated assembly is introduced.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper studies the representations of a subset of the allowable motions for an N-dimensional ellipsoid inside another slightly larger ellipsoid without collision based on the idea of the Kinematics of Containment. As an extension to the previous work on the closed-form lower bounds, this paper proposes another two lower bounds based on the first-order algebraic condition of containment and the closed-form Minkowski difference between two ellipsoids respectively. Querying processes for a specific configuration of the moving ellipsoid and the calculations of the volume of the proposed lower bounds in configuration space (C-space) are introduced. Examples for the proposed lower bounds in 2D and 3D Euclidean space are implemented and the corresponding motion volumes in C-space are compared with different shapes of the ellipsoids. Finally a case study of the application on automated assembly is introduced.
包含在另一个n维椭球中的一个椭球容许运动的下界
基于包容运动学的思想,研究了一个n维椭球在另一个稍大的椭球内不发生碰撞的允许运动子集的表示。作为前人关于闭型下界工作的推广,本文分别基于一阶包含代数条件和闭型Minkowski差分,提出了另外两个下界。介绍了运动椭球体特定构型的查询过程以及构型空间(c空间)中所建议的下界体积的计算。在二维和三维欧几里得空间中实现了所提出的下界示例,并在c空间中对不同形状椭球体的相应运动体积进行了比较。最后介绍了在自动化装配中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信