Truncated Profile Hidden Markov Models

Scott F. Smith
{"title":"Truncated Profile Hidden Markov Models","authors":"Scott F. Smith","doi":"10.1109/CIBCB.2005.1594926","DOIUrl":null,"url":null,"abstract":"The profile hidden Markov model (HMM) is a powerful method for remote homolog database search. However, evaluating the score of each database sequence against a profile HMM is computationally demanding. The computation time required for score evaluation is proportional to the number of states in the profile HMM. This paper examines whether the number of states can be truncated without reducing the ability of the HMM to find proteins containing members of a protein domain family. A genetic algorithm (GA) is presented which finds a good truncation of the HMM states. The results of using truncation on searches of the yeast, E. coli, and pig genomes for several different protein domain families is shown.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The profile hidden Markov model (HMM) is a powerful method for remote homolog database search. However, evaluating the score of each database sequence against a profile HMM is computationally demanding. The computation time required for score evaluation is proportional to the number of states in the profile HMM. This paper examines whether the number of states can be truncated without reducing the ability of the HMM to find proteins containing members of a protein domain family. A genetic algorithm (GA) is presented which finds a good truncation of the HMM states. The results of using truncation on searches of the yeast, E. coli, and pig genomes for several different protein domain families is shown.
截断轮廓隐马尔可夫模型
隐马尔可夫模型(HMM)是远程同源数据库搜索的一种有效方法。然而,根据概要HMM评估每个数据库序列的分数是计算要求很高的。分数评估所需的计算时间与轮廓HMM中的状态数成正比。本文研究了状态数是否可以被截断而不降低HMM寻找含有蛋白质结构域家族成员的蛋白质的能力。提出了一种寻找HMM状态截断的遗传算法(GA)。使用截断搜索酵母,大肠杆菌和猪基因组的几个不同的蛋白质结构域家族的结果显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信