{"title":"Binary mask estimation for voiced speech segregation using Bayesian method","authors":"Shan Liang, Wenju Liu","doi":"10.1109/ACPR.2011.6305053","DOIUrl":null,"url":null,"abstract":"The ideal binary mask (IBM) estimation has been set as the computational goal of Computational auditory scene analysis (CASA). A lot of effort has been made in the IBM estimation via statistical learning method. The current Bayesian methods usually estimate the mask value of each time-frequency (T-F) unit independently with only local auditory features. In this paper, we propose a new Bayesian approach. First, a set of pitch-based auditory features are summarized to exploit the inherent characteristics of the reliable and unreliable time-frequency (T-F) units. A rough estimation is obtained according to Maximum Likelihood (ML) rule. Then, we propose a prior model which is derived from onset/offset segmentation to improve the estimation. Finally, an efficient Markov Chain Monte Carlo (MCMC) procedure is applied to approach the maximum a posterior (MAP) estimation. Proposed method is evaluated on Cooke's 100 mixtures and compared with previous model. Experiments show that our method performs better.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6305053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The ideal binary mask (IBM) estimation has been set as the computational goal of Computational auditory scene analysis (CASA). A lot of effort has been made in the IBM estimation via statistical learning method. The current Bayesian methods usually estimate the mask value of each time-frequency (T-F) unit independently with only local auditory features. In this paper, we propose a new Bayesian approach. First, a set of pitch-based auditory features are summarized to exploit the inherent characteristics of the reliable and unreliable time-frequency (T-F) units. A rough estimation is obtained according to Maximum Likelihood (ML) rule. Then, we propose a prior model which is derived from onset/offset segmentation to improve the estimation. Finally, an efficient Markov Chain Monte Carlo (MCMC) procedure is applied to approach the maximum a posterior (MAP) estimation. Proposed method is evaluated on Cooke's 100 mixtures and compared with previous model. Experiments show that our method performs better.