Application of Particle Swarm Optimization Algorithm in Power Source Thermal Transient Prediction

Shengdong Lin, R. Tsai, Kuan-Yu Chen, Cheng-Chin Chien
{"title":"Application of Particle Swarm Optimization Algorithm in Power Source Thermal Transient Prediction","authors":"Shengdong Lin, R. Tsai, Kuan-Yu Chen, Cheng-Chin Chien","doi":"10.1145/3324033.3324035","DOIUrl":null,"url":null,"abstract":"This paper proposes the usage of particle swarm optimization (PSO) algorithm in identifying system unknowns for heat source thermal transient prediction in electronics device. The proposed method shortens the calculation time and removes the difficulty of unknowns' identification for thermal transient prediction question. Result shows that the RMS error is 0.81°C which indicates the majority is well predicted and the error is 5.39°C while the power has violent variance. PSO converges Req τeq in 20 iterations from 7,000 seconds of data with given each unknown 15 particles. The usage of PSO solves the system unknowns' identification issue from performance application transient and provides reliable results.","PeriodicalId":111592,"journal":{"name":"Proceedings of the 2019 2nd International Conference on Electronics, Communications and Control Engineering - ICECC 2019","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 2nd International Conference on Electronics, Communications and Control Engineering - ICECC 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324033.3324035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes the usage of particle swarm optimization (PSO) algorithm in identifying system unknowns for heat source thermal transient prediction in electronics device. The proposed method shortens the calculation time and removes the difficulty of unknowns' identification for thermal transient prediction question. Result shows that the RMS error is 0.81°C which indicates the majority is well predicted and the error is 5.39°C while the power has violent variance. PSO converges Req τeq in 20 iterations from 7,000 seconds of data with given each unknown 15 particles. The usage of PSO solves the system unknowns' identification issue from performance application transient and provides reliable results.
粒子群优化算法在电源热瞬态预测中的应用
提出了将粒子群优化算法应用于电子设备热源热瞬态预测中系统未知数识别的方法。该方法缩短了热瞬态预测问题的计算时间,消除了未知数识别的困难。结果表明,预测结果的均方根误差为0.81°C,表明大部分预测结果较好,误差为5.39°C,但功率方差较大。PSO在7000秒的数据中,每给定15个未知粒子,在20次迭代中收敛Req τeq。粒子群算法的应用解决了性能应用瞬态下系统未知数的识别问题,提供了可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信