STAP with knowledge-aided data pre-whitening

J. Bergin, C. M. Teixeira, P. Techau, J. Guerci
{"title":"STAP with knowledge-aided data pre-whitening","authors":"J. Bergin, C. M. Teixeira, P. Techau, J. Guerci","doi":"10.1109/NRC.2004.1316437","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for incorporating knowledge sources directly in the space-time beamformer of airborne adaptive radars. The algorithm derivation follows the usual linearly constrained minimum-variance (LCMV) space-time beamformer with additional constraints based on a model of the clutter covariance matrix that is computed using available knowledge about the operating environment. This technique has the desirable property of reducing sample support requirements by \"blending\" the information contained in the observed radar data and the a priori knowledge sources. Applications of the technique to both full degree-of-freedom (DoF) and reduced DoF beamformer algorithms are considered. The performance of the knowledge-aided beamforming techniques are demonstrated using high-fidelity X-band radar simulation data.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper presents a framework for incorporating knowledge sources directly in the space-time beamformer of airborne adaptive radars. The algorithm derivation follows the usual linearly constrained minimum-variance (LCMV) space-time beamformer with additional constraints based on a model of the clutter covariance matrix that is computed using available knowledge about the operating environment. This technique has the desirable property of reducing sample support requirements by "blending" the information contained in the observed radar data and the a priori knowledge sources. Applications of the technique to both full degree-of-freedom (DoF) and reduced DoF beamformer algorithms are considered. The performance of the knowledge-aided beamforming techniques are demonstrated using high-fidelity X-band radar simulation data.
STAP与知识辅助数据预白化
提出了一种将知识源直接集成到机载自适应雷达空时波束形成器中的框架。算法推导遵循通常的线性约束最小方差(LCMV)空时波束形成器的附加约束,该约束基于杂波协方差矩阵模型,该模型是利用可用的操作环境知识计算得到的。该技术通过“混合”雷达观测数据中包含的信息和先验知识来源,降低了样本支持需求。研究了该技术在全自由度波束形成算法和降自由度波束形成算法中的应用。利用高保真x波段雷达仿真数据验证了知识辅助波束形成技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信