Automatic detection of laryngeal pathologies using cepstral analysis in Mel and Bark scales

T. Villa-Cañas, E. Belalcazar-Bolamos, S. Bedoya-Jaramillo, J. F. Garcés, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla
{"title":"Automatic detection of laryngeal pathologies using cepstral analysis in Mel and Bark scales","authors":"T. Villa-Cañas, E. Belalcazar-Bolamos, S. Bedoya-Jaramillo, J. F. Garcés, J. Orozco-Arroyave, J. D. Arias-Londoño, J. Vargas-Bonilla","doi":"10.1109/STSIVA.2012.6340567","DOIUrl":null,"url":null,"abstract":"Problems in voice production can appear due to functional disorders and laryngeal pathologies. The presence of laryngeal pathologies can causes significant changes in the vibrational patterns of the vocal folds and it is demonstrated that the impact of such pathologies can be reduced through continuous speech therapy. We propose a methodology based on non-parametric cepstral coefficients in Mel and Bark scales. The most relevant features are automatically selected using two algorithms, one is based on Principal Components Analysis (PCA) and other is based on Sequential Floating Features Selection (SFFS). In order to decide whether a voice recording is healthy or pathological, four different classifiers are implemented: linear and quadratic Bayesian, K nearest neighbors and Parzen. The best result was 89.18%, it was obtained from the union between MFCC and BFCC.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Problems in voice production can appear due to functional disorders and laryngeal pathologies. The presence of laryngeal pathologies can causes significant changes in the vibrational patterns of the vocal folds and it is demonstrated that the impact of such pathologies can be reduced through continuous speech therapy. We propose a methodology based on non-parametric cepstral coefficients in Mel and Bark scales. The most relevant features are automatically selected using two algorithms, one is based on Principal Components Analysis (PCA) and other is based on Sequential Floating Features Selection (SFFS). In order to decide whether a voice recording is healthy or pathological, four different classifiers are implemented: linear and quadratic Bayesian, K nearest neighbors and Parzen. The best result was 89.18%, it was obtained from the union between MFCC and BFCC.
用Mel和Bark鳞片的倒谱分析自动检测喉部病变
由于功能障碍和喉部病变,发声可能出现问题。喉部病变的存在可以引起声带振动模式的显著变化,并且可以通过持续的语言治疗来减少这种病变的影响。我们提出了一种基于Mel和Bark尺度的非参数倒谱系数的方法。使用两种算法自动选择最相关的特征,一种是基于主成分分析(PCA),另一种是基于顺序浮动特征选择(SFFS)。为了确定语音记录是健康的还是病态的,实现了四种不同的分类器:线性和二次贝叶斯,K近邻和Parzen。MFCC与BFCC结合的最佳回收率为89.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信