{"title":"Deep Reinforcement One-Shot Learning for Change Point Detection","authors":"A. Puzanov, Kobi Cohen","doi":"10.1109/ALLERTON.2018.8635928","DOIUrl":null,"url":null,"abstract":"We consider the problem of detecting a change in a time series quickly and reliably, where only a few training instances are available. Examples include identifying changes in network traffic due to zero-day attacks, and computer vision applications where changes in series of images that represent significant events needed to be detected. These are known as cases of one-shot learning. We develop a novel Deep Reinforcement One-shot Learning (DeROL) framework to address this challenge. The basic idea of the DeROL algorithm is to train a deep-Q network to obtain a policy which is oblivious to the unseen classes in the testing data. Then, in real-time, DeROL maps the current state of the one-shot learning process to operational actions based on the trained deep-Q network, to maximize the objective function. We tested the algorithm using the OMNIGLOT dataset to demonstrate the efficiency of the DeROL framework.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We consider the problem of detecting a change in a time series quickly and reliably, where only a few training instances are available. Examples include identifying changes in network traffic due to zero-day attacks, and computer vision applications where changes in series of images that represent significant events needed to be detected. These are known as cases of one-shot learning. We develop a novel Deep Reinforcement One-shot Learning (DeROL) framework to address this challenge. The basic idea of the DeROL algorithm is to train a deep-Q network to obtain a policy which is oblivious to the unseen classes in the testing data. Then, in real-time, DeROL maps the current state of the one-shot learning process to operational actions based on the trained deep-Q network, to maximize the objective function. We tested the algorithm using the OMNIGLOT dataset to demonstrate the efficiency of the DeROL framework.