Non-parametric Regression and Random Balance Method Modification for Determination of the Most Informative Features

Kseniya Zablotskaya, Mumtaz Ahmed, Sergey Zablotskiy, W. Minker
{"title":"Non-parametric Regression and Random Balance Method Modification for Determination of the Most Informative Features","authors":"Kseniya Zablotskaya, Mumtaz Ahmed, Sergey Zablotskiy, W. Minker","doi":"10.1109/IE.2010.19","DOIUrl":null,"url":null,"abstract":"In this paper we present a new method which allows us to detect the most informative features out of all data extracted from a certain data corpus. Widely used Pearson’s coefficient is not reliable if the dependency between extracted features (input variables) and the objective function (output) is not linear. This approach is based on a modified random balance method (RBM) combined with non-parametric kernel regression for modeling the dependency between output and input variables. The standard random balance method stochastically determines the most important features of a process, but it requires the values of the objective function at the certain assigned points. If there is no possibility to calculate these values, it is necessary to approximate them. Since we assume that the dependency between stochastic variables can be non-linear, it is necessary to take an appropriate model. We used non-parametric kernel regression because knowledge about the parametric structure of the dependency is not needed. Moreover, we modified the random balance method to handle the non-linearity of the data","PeriodicalId":180375,"journal":{"name":"2010 Sixth International Conference on Intelligent Environments","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Intelligent Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2010.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a new method which allows us to detect the most informative features out of all data extracted from a certain data corpus. Widely used Pearson’s coefficient is not reliable if the dependency between extracted features (input variables) and the objective function (output) is not linear. This approach is based on a modified random balance method (RBM) combined with non-parametric kernel regression for modeling the dependency between output and input variables. The standard random balance method stochastically determines the most important features of a process, but it requires the values of the objective function at the certain assigned points. If there is no possibility to calculate these values, it is necessary to approximate them. Since we assume that the dependency between stochastic variables can be non-linear, it is necessary to take an appropriate model. We used non-parametric kernel regression because knowledge about the parametric structure of the dependency is not needed. Moreover, we modified the random balance method to handle the non-linearity of the data
非参数回归与修正随机平衡法确定最具信息量的特征
在本文中,我们提出了一种新的方法,使我们能够从某个数据语料库中提取出最具信息量的特征。如果提取的特征(输入变量)与目标函数(输出)之间的依赖关系不是线性的,则广泛使用的Pearson系数是不可靠的。该方法基于改进的随机平衡方法,结合非参数核回归对输出和输入变量之间的依赖关系进行建模。标准的随机平衡法随机地确定过程的最重要特征,但它要求目标函数在某些指定点处的值。如果不可能计算出这些值,就必须对它们进行近似。由于我们假设随机变量之间的依赖关系可以是非线性的,因此有必要采用适当的模型。我们使用非参数核回归,因为不需要了解依赖关系的参数结构。此外,我们还对随机平衡法进行了改进,以处理数据的非线性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信