Federated machine learning through edge ready architectures with privacy preservation as a service

K. Koutsopoulos, Antoine Simon, B. Ertl, S. Tompros, K. Kapusta, G. Coatrieux, A. Gavras, Giannis Ledakis, Orazio Toscano, S. Covaci, Christoph Thuemmler
{"title":"Federated machine learning through edge ready architectures with privacy preservation as a service","authors":"K. Koutsopoulos, Antoine Simon, B. Ertl, S. Tompros, K. Kapusta, G. Coatrieux, A. Gavras, Giannis Ledakis, Orazio Toscano, S. Covaci, Christoph Thuemmler","doi":"10.1109/FNWF55208.2022.00067","DOIUrl":null,"url":null,"abstract":"This paper presents the details of a novel approach, based on edge and advanced privacy preserving solutions, that tries to accelerate the adoption of personal data federation for the benefit of the evolution of valuable advanced AI models. The approach focuses on the establishment of high degree of trust between data owner and data management infrastructure so that consent in data processing is given by means of functional and enforceable options applicable at all levels of workloads and processes. The overall set of solutions will be delivered as an open-source set of implementations in the context of the PAROMA-MED project.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the details of a novel approach, based on edge and advanced privacy preserving solutions, that tries to accelerate the adoption of personal data federation for the benefit of the evolution of valuable advanced AI models. The approach focuses on the establishment of high degree of trust between data owner and data management infrastructure so that consent in data processing is given by means of functional and enforceable options applicable at all levels of workloads and processes. The overall set of solutions will be delivered as an open-source set of implementations in the context of the PAROMA-MED project.
通过边缘就绪架构进行联邦机器学习,并将隐私保护作为服务
本文介绍了一种基于边缘和先进隐私保护解决方案的新方法的细节,该方法试图加速采用个人数据联合,以促进有价值的先进人工智能模型的发展。该方法的重点是在数据所有者和数据管理基础设施之间建立高度信任,以便通过适用于各级工作负载和进程的功能和可执行的备选办法给予数据处理方面的同意。整个解决方案集将作为PAROMA-MED项目上下文中的开源实现集交付。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信