Signal Reconstruction Performance Under Quantized Noisy Compressed Sensing

Markus Leinonen, M. Codreanu, M. Juntti
{"title":"Signal Reconstruction Performance Under Quantized Noisy Compressed Sensing","authors":"Markus Leinonen, M. Codreanu, M. Juntti","doi":"10.1109/DCC.2019.00098","DOIUrl":null,"url":null,"abstract":"We study rate-distortion (RD) performance of various single-sensor compressed sensing (CS) schemes for acquiring sparse signals via quantized/encoded noisy linear measurements, motivated by low-power sensor applications. For such a quantized CS (QCS) context, the paper combines and refines our recent advances in algorithm designs and theoretical analysis. Practical symbol-by-symbol quantizer based QCS methods of different compression strategies are proposed. The compression limit of QCS – the remote RDF – is assessed through an analytical lower bound and a numerical approximation method. Simulation results compare the RD performances of different schemes.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study rate-distortion (RD) performance of various single-sensor compressed sensing (CS) schemes for acquiring sparse signals via quantized/encoded noisy linear measurements, motivated by low-power sensor applications. For such a quantized CS (QCS) context, the paper combines and refines our recent advances in algorithm designs and theoretical analysis. Practical symbol-by-symbol quantizer based QCS methods of different compression strategies are proposed. The compression limit of QCS – the remote RDF – is assessed through an analytical lower bound and a numerical approximation method. Simulation results compare the RD performances of different schemes.
量化噪声压缩感知下的信号重构性能
我们研究了各种单传感器压缩感知(CS)方案在低功耗传感器应用的驱动下,通过量化/编码噪声线性测量获取稀疏信号的速率失真(RD)性能。对于这样的量化CS (QCS)背景,本文结合并完善了我们在算法设计和理论分析方面的最新进展。提出了实用的基于符号量化器的QCS压缩策略。通过解析下界和数值逼近法对远程RDF QCS的压缩极限进行了评估。仿真结果比较了不同方案的RD性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信