Robust Path Integral Control on Stochastic Differential Games

D. Vrushabh, P. Akshay, K. Sonam, S. Wagh, Navdeep M. Singh
{"title":"Robust Path Integral Control on Stochastic Differential Games","authors":"D. Vrushabh, P. Akshay, K. Sonam, S. Wagh, Navdeep M. Singh","doi":"10.1109/MED48518.2020.9183351","DOIUrl":null,"url":null,"abstract":"This paper develops a robust path integral (RPI) model predictive control using the Monte Carlo (MC) sampling to address the optimal control (OC) problem for the stochastic differential game (SDG). The two-player zero-sum differential game has been extensively investigated, mostly as its outcome indicates the $H_{\\infty}$ optimality. The proposed path integral (PI) control framework provides an analytically sound method for building an algorithm of optimal control for this game based on stochastic trajectory sampling. This is achieved by using Feynman-Kac (F-K) lemma which transforms the value function of stochastic optimal control (SOC) problem into an expectation over all probable trajectories. This transformation makes it possible to solve SOC problems through MC sampling of stochastic processes. Finally, the RPI model predictive control using MC sampling is efficiently implemented for an inverted pendulum system. The RPI control has achieved good performance for changes in inverted pendulum weight and friction when the complete nonlinear swing-up is concerned while such environmental adjustments are not dealt with in a regular PI control.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops a robust path integral (RPI) model predictive control using the Monte Carlo (MC) sampling to address the optimal control (OC) problem for the stochastic differential game (SDG). The two-player zero-sum differential game has been extensively investigated, mostly as its outcome indicates the $H_{\infty}$ optimality. The proposed path integral (PI) control framework provides an analytically sound method for building an algorithm of optimal control for this game based on stochastic trajectory sampling. This is achieved by using Feynman-Kac (F-K) lemma which transforms the value function of stochastic optimal control (SOC) problem into an expectation over all probable trajectories. This transformation makes it possible to solve SOC problems through MC sampling of stochastic processes. Finally, the RPI model predictive control using MC sampling is efficiently implemented for an inverted pendulum system. The RPI control has achieved good performance for changes in inverted pendulum weight and friction when the complete nonlinear swing-up is concerned while such environmental adjustments are not dealt with in a regular PI control.
随机微分对策的鲁棒路径积分控制
针对随机微分对策(SDG)的最优控制问题,提出了一种基于蒙特卡罗(MC)采样的鲁棒路径积分(RPI)模型预测控制方法。二人零和微分博弈已被广泛研究,主要是因为其结果表明$H_{\infty}$最优性。所提出的路径积分(PI)控制框架为建立基于随机轨迹采样的该博弈的最优控制算法提供了一种解析上合理的方法。这是通过使用Feynman-Kac (F-K)引理实现的,该引理将随机最优控制(SOC)问题的值函数转换为对所有可能轨迹的期望。这种转换使得通过随机过程的MC采样来解决SOC问题成为可能。最后,对倒立摆系统有效地实现了基于MC采样的RPI模型预测控制。在完全非线性上摆时,RPI控制对倒立摆重量和摩擦力的变化有较好的控制效果,而常规PI控制不考虑这种环境调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信