On a problem of Sárközy and Sós for multivariate linear forms

Q2 Mathematics
Juanjo Rué , Christoph Spiegel
{"title":"On a problem of Sárközy and Sós for multivariate linear forms","authors":"Juanjo Rué ,&nbsp;Christoph Spiegel","doi":"10.1016/j.endm.2018.06.018","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for pairwise co-prime numbers <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> there does not exist any infinite set of positive integers <span><math><mi>A</mi></math></span> such that the representation function <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>n</mi><mo>}</mo></math></span> becomes constant for <em>n</em> large enough. This result is a particular case of our main theorem, which poses a further step towards answering a question of Sárközy and Sós and widely extends a previous result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math. Society 2009).</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.018","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

We prove that for pairwise co-prime numbers k1,,kd2 there does not exist any infinite set of positive integers A such that the representation function rA(n)=#{(a1,,ad)Ad:k1a1++kdad=n} becomes constant for n large enough. This result is a particular case of our main theorem, which poses a further step towards answering a question of Sárközy and Sós and widely extends a previous result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math. Society 2009).

多元线性形式的Sárközy和Sós问题
证明了对于成对协素数k1,…,kd≥2,不存在任何正整数的无限集A,使得表示函数rA(n)=#{(a1,…,ad)∈ad:k1a1+…+kdad=n}在n足够大时成为常数。这个结果是我们的主要定理的一个特殊情况,它为回答Sárközy和Sós的问题提出了进一步的步骤,并广泛地扩展了Cilleruelo和ru关于二元线性形式的先前结果。伦敦数学学院。社会2009)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信