Emotion Recognition Based on Speech Signals by Combining Empirical Mode Decomposition and Deep Neural Network

Shing Tai Pan, Ching Fa Chen, Chuan Cheng Hong
{"title":"Emotion Recognition Based on Speech Signals by Combining Empirical Mode Decomposition and Deep Neural Network","authors":"Shing Tai Pan, Ching Fa Chen, Chuan Cheng Hong","doi":"10.54646/bijiam.014","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for speech emotion recognition. Empirical mode decomposition (EMD) is applied in this paper for the extraction of emotional features from speeches, and a deep neural network (DNN) is used to classify speech emotions. This paper enhances the emotional components in speech signals by using EMD with acoustic feature Mel-Scale Frequency Cepstral Coefficients (MFCCs) to improve the recognition rates of emotions from speeches using the classifier DNN. In this paper, EMD is first used to decompose the speech signals, which contain emotional components into multiple intrinsic mode functions (IMFs), and then emotional features are derived from the IMFs and are calculated using MFCC. Then, the emotional features are used to train the DNN model. Finally, a trained model that could recognize the emotional signals is then used to identify emotions in speeches. Experimental results reveal that the proposed method is effective.","PeriodicalId":231453,"journal":{"name":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijiam.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel method for speech emotion recognition. Empirical mode decomposition (EMD) is applied in this paper for the extraction of emotional features from speeches, and a deep neural network (DNN) is used to classify speech emotions. This paper enhances the emotional components in speech signals by using EMD with acoustic feature Mel-Scale Frequency Cepstral Coefficients (MFCCs) to improve the recognition rates of emotions from speeches using the classifier DNN. In this paper, EMD is first used to decompose the speech signals, which contain emotional components into multiple intrinsic mode functions (IMFs), and then emotional features are derived from the IMFs and are calculated using MFCC. Then, the emotional features are used to train the DNN model. Finally, a trained model that could recognize the emotional signals is then used to identify emotions in speeches. Experimental results reveal that the proposed method is effective.
基于经验模态分解和深度神经网络的语音信号情感识别
提出了一种新的语音情感识别方法。本文将经验模态分解(EMD)用于语音情感特征的提取,并利用深度神经网络(DNN)对语音情感进行分类。本文采用带mel尺度频率倒谱系数(MFCCs)的EMD增强语音信号中的情绪成分,提高分类器DNN对语音情绪的识别率。本文首先利用EMD将包含情感成分的语音信号分解为多个内禀模态函数(imf),然后从imf中提取情感特征,并利用MFCC计算情感特征。然后,将情感特征用于DNN模型的训练。最后,一个可以识别情绪信号的训练模型被用来识别演讲中的情绪。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信