Mechanical characteristics and high temperature stability of oxidized Ti3AlC2 nanolaminat

T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshin, V. Podhurska, M. Loshak, T. Cabioc’h, P. Chartier, V. Sverdun, V. Moshchil, S. Dub, M. Karpets, A. Starostina, A. Kozyrev
{"title":"Mechanical characteristics and high temperature stability of oxidized Ti3AlC2 nanolaminat","authors":"T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshin, V. Podhurska, M. Loshak, T. Cabioc’h, P. Chartier, V. Sverdun, V. Moshchil, S. Dub, M. Karpets, A. Starostina, A. Kozyrev","doi":"10.1109/OMEE.2014.6912349","DOIUrl":null,"url":null,"abstract":"The oxide film formed on the surface of the highly dense (ρ=4.27 g/cm<sup>3</sup>, porosity 1 %) material based on nanolaminated MAX phase Ti<sub>3</sub>AlC<sub>2</sub> (89 % Ti<sub>3</sub>AlC<sub>2</sub>, 6 % TiC, 5 % Al<sub>2</sub>O<sub>3</sub>) manufactured by hot pressing (at 30 MPa) made the material highly resistant in air at high temperatures: after 1000 hours of exposition at 600 °C it demonstrated a higher resistance to oxidation than chromium ferrite steels (Crofer GPU and JDA types). Due to the surface oxidation self-healing of defects took place. Besides, the Ti<sub>3</sub>AlC<sub>2</sub> material demonstrated resistance against high-temperature creep and after being kept in H<sub>2</sub> at 600 °C for 3h its bending strength reduced by 5 % only. At room temperature the Ti<sub>3</sub>AlC<sub>2</sub> bulk exhibited microhardness Hμ = 4.6 GPa (at 5 N), hardness HV<sub>50</sub> = 630 (at 50 N ) and HRA = 70 (at 600 N), Young modulus was 140 ± 29 GPa, bending strength =500 MPa, compression strength 700 MPa, and fracture toughness K<sub>1C</sub>=10.2 MPa·m<sup>0.5</sup>.","PeriodicalId":142377,"journal":{"name":"International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEE.2014.6912349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The oxide film formed on the surface of the highly dense (ρ=4.27 g/cm3, porosity 1 %) material based on nanolaminated MAX phase Ti3AlC2 (89 % Ti3AlC2, 6 % TiC, 5 % Al2O3) manufactured by hot pressing (at 30 MPa) made the material highly resistant in air at high temperatures: after 1000 hours of exposition at 600 °C it demonstrated a higher resistance to oxidation than chromium ferrite steels (Crofer GPU and JDA types). Due to the surface oxidation self-healing of defects took place. Besides, the Ti3AlC2 material demonstrated resistance against high-temperature creep and after being kept in H2 at 600 °C for 3h its bending strength reduced by 5 % only. At room temperature the Ti3AlC2 bulk exhibited microhardness Hμ = 4.6 GPa (at 5 N), hardness HV50 = 630 (at 50 N ) and HRA = 70 (at 600 N), Young modulus was 140 ± 29 GPa, bending strength =500 MPa, compression strength 700 MPa, and fracture toughness K1C=10.2 MPa·m0.5.
氧化Ti3AlC2纳米层的力学特性及高温稳定性
通过热压(30 MPa)制备的基于纳米层化MAX相Ti3AlC2 (89% Ti3AlC2, 6% TiC, 5% Al2O3)的高密度(ρ=4.27 g/cm3,孔隙率1%)材料表面形成的氧化膜使该材料在高温空气中具有很高的抗氧化性:在600℃下暴露1000小时后,它表现出比铬铁素体钢(Crofer GPU和JDA类型)更高的抗氧化性。由于表面氧化,缺陷发生自愈。此外,Ti3AlC2材料具有抗高温蠕变性能,在600℃的H2中保存3h后,其抗弯强度仅下降5%。室温下,Ti3AlC2体的显微硬度Hμ = 4.6 GPa (5 N),硬度HV50 = 630 (50 N), HRA = 70 (600 N),杨氏模量140±29 GPa,抗弯强度为500 MPa,抗压强度为700 MPa,断裂韧性K1C=10.2 MPa·m0.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信