Non-Intrusive Load Disaggregation Using Semi-Supervised Learning Method

Nan Miao, Shengjie Zhao, Qingjiang Shi, Rongqing Zhang
{"title":"Non-Intrusive Load Disaggregation Using Semi-Supervised Learning Method","authors":"Nan Miao, Shengjie Zhao, Qingjiang Shi, Rongqing Zhang","doi":"10.1109/SPAC49953.2019.237865","DOIUrl":null,"url":null,"abstract":"With the emerging of smart metering around the world, there is a growing demand to analyse the residential energy usage. In this paper, we propose a Deep Neural Network (DNN)-based approach for non-intrusive load monitoring (NILM), which can achieve effective and efficient estimation of individual appliance usage according to a single main meter reading in a non-intrusive manner. Considering practical situations, two training methods are provided. The first training approach is fully supervised learning, which requires a ground truth of label, indicating the state of the appliance (ON/OFF), to build a prediction model. The second training approach is semi-supervised learning, leading to better performance by F-Measure metric while only requiring some more unlabelled training data. Experimental results on the low-sample rate REDD dataset demonstrate the superior performance of our proposed DNN-based method compared with Hidden Markov Model (HMM)based and Graph Signal Processing (GSP)-based approaches.","PeriodicalId":410003,"journal":{"name":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC49953.2019.237865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the emerging of smart metering around the world, there is a growing demand to analyse the residential energy usage. In this paper, we propose a Deep Neural Network (DNN)-based approach for non-intrusive load monitoring (NILM), which can achieve effective and efficient estimation of individual appliance usage according to a single main meter reading in a non-intrusive manner. Considering practical situations, two training methods are provided. The first training approach is fully supervised learning, which requires a ground truth of label, indicating the state of the appliance (ON/OFF), to build a prediction model. The second training approach is semi-supervised learning, leading to better performance by F-Measure metric while only requiring some more unlabelled training data. Experimental results on the low-sample rate REDD dataset demonstrate the superior performance of our proposed DNN-based method compared with Hidden Markov Model (HMM)based and Graph Signal Processing (GSP)-based approaches.
基于半监督学习方法的非侵入式负载分解
随着智能电表在世界范围内的兴起,对住宅能源使用情况分析的需求日益增长。在本文中,我们提出了一种基于深度神经网络(DNN)的非侵入式负荷监测(NILM)方法,该方法可以根据单个主电表读数以非侵入式方式实现对单个设备使用情况的有效估计。结合实际情况,提供了两种培训方法。第一种训练方法是完全监督学习,它需要标签的基本真值,表明设备的状态(ON/OFF),以建立预测模型。第二种训练方法是半监督学习,通过F-Measure度量获得更好的性能,同时只需要更多的未标记训练数据。在低采样率REDD数据集上的实验结果表明,与基于隐马尔可夫模型(HMM)和基于图信号处理(GSP)的方法相比,我们提出的基于dnn的方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信