High-throughput switch-based interconnect for future SoCs

P. Pande, C. Grecu, A. Ivanov
{"title":"High-throughput switch-based interconnect for future SoCs","authors":"P. Pande, C. Grecu, A. Ivanov","doi":"10.1109/IWSOC.2003.1213053","DOIUrl":null,"url":null,"abstract":"System on Chip (SoC) design in the forthcoming billion-transistor era will involve the integration of numerous heterogeneous semiconductor intellectual property (IP) blocks. The success of this approach depends on the seamless integration of cores like processors, memories, UARTs, etc. Some of the main problems in future SoC designs arise from non scalable global wire delays, failure to achieve global synchronization, errors due to signal integrity issues and difficulties associated with non scalable bus-based functional interconnects. These problems can be addressed by using a network-centric approach to design SoCs, where instead of global wiring, IP blocks are integrated using a switch-based on-chip interconnection network. One of the major concerns with interconnection networks is throughput degradation due to idle physical channels. By introducing the concept of virtual channels in an on-chip interconnection network, the overall throughput of the SoC can be improved. To achieve this throughput improvement, extra silicon area is required but the overall area consumed by the switches can be made to amount to a very small portion of a billion transistor SoC.","PeriodicalId":259178,"journal":{"name":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2003.1213053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

System on Chip (SoC) design in the forthcoming billion-transistor era will involve the integration of numerous heterogeneous semiconductor intellectual property (IP) blocks. The success of this approach depends on the seamless integration of cores like processors, memories, UARTs, etc. Some of the main problems in future SoC designs arise from non scalable global wire delays, failure to achieve global synchronization, errors due to signal integrity issues and difficulties associated with non scalable bus-based functional interconnects. These problems can be addressed by using a network-centric approach to design SoCs, where instead of global wiring, IP blocks are integrated using a switch-based on-chip interconnection network. One of the major concerns with interconnection networks is throughput degradation due to idle physical channels. By introducing the concept of virtual channels in an on-chip interconnection network, the overall throughput of the SoC can be improved. To achieve this throughput improvement, extra silicon area is required but the overall area consumed by the switches can be made to amount to a very small portion of a billion transistor SoC.
用于未来soc的高吞吐量交换机互连
在即将到来的十亿晶体管时代,片上系统(SoC)设计将涉及到众多异构半导体知识产权(IP)块的集成。这种方法的成功取决于处理器、存储器、UARTs等核心的无缝集成。未来SoC设计中的一些主要问题来自于不可扩展的全局线延迟、无法实现全局同步、由于信号完整性问题引起的错误以及与不可扩展的基于总线的功能互连相关的困难。这些问题可以通过使用以网络为中心的方法来设计soc来解决,而不是使用全局布线,而是使用基于交换机的片上互连网络集成IP块。互连网络的主要问题之一是由于空闲的物理通道而导致的吞吐量下降。通过在片上互连网络中引入虚拟通道的概念,可以提高SoC的整体吞吐量。为了实现这种吞吐量的提高,需要额外的硅面积,但开关消耗的总面积可以达到十亿晶体管SoC的很小一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信