Path planing and tracking for multi-robot system based on improved PSO algorithm

Mao Yang, Chun-zhe Li
{"title":"Path planing and tracking for multi-robot system based on improved PSO algorithm","authors":"Mao Yang, Chun-zhe Li","doi":"10.1109/MEC.2011.6025799","DOIUrl":null,"url":null,"abstract":"A new algorithm based on improved particle swarm optimization (PSO) of cubic splines is proposed for multiple mobile robot path planning. The center path is described by string of cubic splines, thus the path planning is equivalent to parameter optimization of particular cubic splines. Improved PSO is introduced to get the optimal path for its fast convergence and global search character. PD controller is adopted to tracking the center optimal path. Experimental results show that a collision-avoidance path can be found effectively among obstacles and each other by the proposed algorithm.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A new algorithm based on improved particle swarm optimization (PSO) of cubic splines is proposed for multiple mobile robot path planning. The center path is described by string of cubic splines, thus the path planning is equivalent to parameter optimization of particular cubic splines. Improved PSO is introduced to get the optimal path for its fast convergence and global search character. PD controller is adopted to tracking the center optimal path. Experimental results show that a collision-avoidance path can be found effectively among obstacles and each other by the proposed algorithm.
基于改进粒子群算法的多机器人系统路径规划与跟踪
提出了一种基于改进三次样条粒子群算法的多移动机器人路径规划算法。中心路径用三次样条串来描述,路径规划相当于特定三次样条的参数优化。引入改进粒子群算法,利用其快速收敛和全局搜索的特点得到最优路径。采用PD控制器对中心最优路径进行跟踪。实验结果表明,该算法可以有效地在障碍物之间和彼此之间找到避碰路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信