Behavior Fusion Estimation for Robot Learning from Demonstration

M. Nicolescu, O. Jenkins, A. Olenderski
{"title":"Behavior Fusion Estimation for Robot Learning from Demonstration","authors":"M. Nicolescu, O. Jenkins, A. Olenderski","doi":"10.1109/DIS.2006.15","DOIUrl":null,"url":null,"abstract":"A critical challenge in designing robot systems that learn from demonstration is the ability to map the behavior of the trainer as sensed by the robot onto an existing repertoire of the robot's basic/primitive capabilities. Observed behavior of the teacher may constitute a combination (or superposition) of the robot's individual primitives. Once a task is demonstrated, our method learns a fusion (superposition) of primitives (as a vector of weights) applicable to situations encountered by the robot for performing the same task. Our method allows a robot to infer essential aspects of the demonstrated tasks without specifically tailored primitive behaviors. We validate our approach in a simulated environment with a Pioneer 3DX mobile robot. We demonstrate the advantages of our learning approach through comparison with manually coded controllers and sequential learning","PeriodicalId":318812,"journal":{"name":"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIS.2006.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A critical challenge in designing robot systems that learn from demonstration is the ability to map the behavior of the trainer as sensed by the robot onto an existing repertoire of the robot's basic/primitive capabilities. Observed behavior of the teacher may constitute a combination (or superposition) of the robot's individual primitives. Once a task is demonstrated, our method learns a fusion (superposition) of primitives (as a vector of weights) applicable to situations encountered by the robot for performing the same task. Our method allows a robot to infer essential aspects of the demonstrated tasks without specifically tailored primitive behaviors. We validate our approach in a simulated environment with a Pioneer 3DX mobile robot. We demonstrate the advantages of our learning approach through comparison with manually coded controllers and sequential learning
基于演示的机器人学习行为融合估计
在设计从演示中学习的机器人系统时,一个关键的挑战是将机器人感知到的训练者的行为映射到机器人现有的基本/原始能力上的能力。观察到的教师行为可能构成了机器人个体基本特征的组合(或叠加)。一旦演示了任务,我们的方法就会学习适用于机器人执行相同任务时遇到的情况的原语(作为权重向量)的融合(叠加)。我们的方法允许机器人在没有特别定制的原始行为的情况下推断演示任务的基本方面。我们在先锋3DX移动机器人的模拟环境中验证了我们的方法。通过与手动编码控制器和顺序学习的比较,我们证明了我们的学习方法的优点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信