A random measure approach for context estimation in hyperspectral imagery

Jeremy Bolton, P. Gader
{"title":"A random measure approach for context estimation in hyperspectral imagery","authors":"Jeremy Bolton, P. Gader","doi":"10.1109/WHISPERS.2009.5288988","DOIUrl":null,"url":null,"abstract":"In remotely sensed hyperspectral imagery (HSI), images are collected in the presence of various contextual factors which change the distribution of the observed data. Examples of these factors are suns intensity, atmospheric constituents, soil moisture, local shading, etc. In this paper, a context based classification algorithm is developed which implicitly identifies context without explicitly needing environmental data (as in may be unknown or locally variable). Spectra sets are clustered into groups of similar contexts using a random measure model. Then appropriate classifiers are constructed for each context. The resulting context-based classification algorithm constructed within the random set framework then aggregates the classifiers results in an ensemble-like fashion. Results indicate that the proposed approach performs well in the presence of contextual factors.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5288988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In remotely sensed hyperspectral imagery (HSI), images are collected in the presence of various contextual factors which change the distribution of the observed data. Examples of these factors are suns intensity, atmospheric constituents, soil moisture, local shading, etc. In this paper, a context based classification algorithm is developed which implicitly identifies context without explicitly needing environmental data (as in may be unknown or locally variable). Spectra sets are clustered into groups of similar contexts using a random measure model. Then appropriate classifiers are constructed for each context. The resulting context-based classification algorithm constructed within the random set framework then aggregates the classifiers results in an ensemble-like fashion. Results indicate that the proposed approach performs well in the presence of contextual factors.
高光谱图像环境估计的随机测量方法
在遥感高光谱图像(HSI)中,图像是在各种环境因素存在的情况下收集的,这些因素会改变观测数据的分布。这些因素的例子有太阳强度、大气成分、土壤湿度、局部遮阳等。本文开发了一种基于上下文的分类算法,该算法隐式地识别上下文,而不需要显式地需要环境数据(例如可能是未知的或局部变量)。光谱集使用随机测量模型聚类成相似上下文的组。然后为每个上下文构造适当的分类器。然后,在随机集框架内构造的基于上下文的分类算法以类似集成的方式聚合分类器结果。结果表明,该方法在存在上下文因素的情况下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信