Analysis and evaluation of regression model for centrifugal chiller

H. Cai, J. Lv
{"title":"Analysis and evaluation of regression model for centrifugal chiller","authors":"H. Cai, J. Lv","doi":"10.1145/3522749.3523082","DOIUrl":null,"url":null,"abstract":"The prediction accuracy of three kinds of centrifugal chiller regression models (Multivariable Polynomial Regression Model, BP-Artificial Neural Network Regression Model and Support Vector Regression Model) is analyzed using ASHRAE 1043-RP data, and the prediction performance in small sample is also discussed. Experimental results show that the Linear Regression Model and Support Vector Regression Model have excellent prediction performance, while BP Neural Network Regression Model has serious over-fitting problem. These results can provide some reference for chiller fault diagnosis model selection.","PeriodicalId":361473,"journal":{"name":"Proceedings of the 6th International Conference on Control Engineering and Artificial Intelligence","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Control Engineering and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3522749.3523082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction accuracy of three kinds of centrifugal chiller regression models (Multivariable Polynomial Regression Model, BP-Artificial Neural Network Regression Model and Support Vector Regression Model) is analyzed using ASHRAE 1043-RP data, and the prediction performance in small sample is also discussed. Experimental results show that the Linear Regression Model and Support Vector Regression Model have excellent prediction performance, while BP Neural Network Regression Model has serious over-fitting problem. These results can provide some reference for chiller fault diagnosis model selection.
离心式冷水机组回归模型的分析与评价
利用ASHRAE 1043-RP数据,分析了多变量多项式回归模型、bp -人工神经网络回归模型和支持向量回归模型三种离心式制冷机回归模型的预测精度,并讨论了小样本下的预测性能。实验结果表明,线性回归模型和支持向量回归模型具有良好的预测性能,而BP神经网络回归模型存在严重的过拟合问题。研究结果可为冷水机组故障诊断模型的选择提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信