Multiscale handwritten character recognition using CNN image filters

E. Saatci, V. Tavsanoglu
{"title":"Multiscale handwritten character recognition using CNN image filters","authors":"E. Saatci, V. Tavsanoglu","doi":"10.1109/IJCNN.2002.1007454","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-scale character recognition system consisting of three single-scale recognition systems. The system uses a filter bank of Gabor-type filters implemented by a cellular neural network (CNN). Based on a test set of 26 test characters acting as template and a set consisting of four subsets of 26 unknown handwritten test characters, a maximum 96% and an average 93% correct recognition is provided. This is a considerable improvement over the performance of existing single-scale recognition systems.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a multi-scale character recognition system consisting of three single-scale recognition systems. The system uses a filter bank of Gabor-type filters implemented by a cellular neural network (CNN). Based on a test set of 26 test characters acting as template and a set consisting of four subsets of 26 unknown handwritten test characters, a maximum 96% and an average 93% correct recognition is provided. This is a considerable improvement over the performance of existing single-scale recognition systems.
使用CNN图像滤波器的多尺度手写字符识别
本文提出了一个由三个单尺度识别系统组成的多尺度字符识别系统。该系统使用了一组由细胞神经网络(CNN)实现的gabor型滤波器。以26个测试字符作为模板的测试集和26个未知手写测试字符的4个子集组成的测试集,提供了最高96%和平均93%的正确率。与现有的单尺度识别系统相比,这是一个相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信