Jane Breen, Alexander W. N. Riasanovsky, Michael Tait, John C. Urschel
{"title":"Maximum spread of graphs and bipartite graphs","authors":"Jane Breen, Alexander W. N. Riasanovsky, Michael Tait, John C. Urschel","doi":"10.1090/cams/14","DOIUrl":null,"url":null,"abstract":"<p>Given any graph <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the spread of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the maximum difference between any two eigenvalues of the adjacency matrix of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs. The first states that for all positive integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-vertex graph <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that maximizes spread is the join of a clique and an independent set, with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left floor 2 n slash 3 right floor\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⌊<!-- ⌊ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⌋<!-- ⌋ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lfloor 2n/3 \\rfloor</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left ceiling n slash 3 right ceiling\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⌈<!-- ⌈ --></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⌉<!-- ⌉ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lceil n/3 \\rceil</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> vertices, respectively. Using techniques from the theory of graph limits and numerical analysis, we prove this claim for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> sufficiently large. As an intermediate step, we prove an analogous result for a family of operators in the Hilbert space over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L squared left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathscr {L}^2[0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The second conjecture claims that for any fixed <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m less-than-or-equal-to n squared slash 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m \\leq n^2/4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> maximizes spread over all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-vertex graphs with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> edges, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bipartite. We prove an asymptotic version of this conjecture. Furthermore, we construct an infinite family of counterexamples, which shows that our asymptotic solution is tight up to lower-order error terms.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Given any graph GG, the spread of GG is the maximum difference between any two eigenvalues of the adjacency matrix of GG. In this paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs. The first states that for all positive integers nn, the nn-vertex graph GG that maximizes spread is the join of a clique and an independent set, with ⌊2n/3⌋\lfloor 2n/3 \rfloor and ⌈n/3⌉\lceil n/3 \rceil vertices, respectively. Using techniques from the theory of graph limits and numerical analysis, we prove this claim for all nn sufficiently large. As an intermediate step, we prove an analogous result for a family of operators in the Hilbert space over L2[0,1]\mathscr {L}^2[0,1]. The second conjecture claims that for any fixed m≤n2/4m \leq n^2/4, if GG maximizes spread over all nn-vertex graphs with mm edges, then GG is bipartite. We prove an asymptotic version of this conjecture. Furthermore, we construct an infinite family of counterexamples, which shows that our asymptotic solution is tight up to lower-order error terms.