Maximum spread of graphs and bipartite graphs

Jane Breen, Alexander W. N. Riasanovsky, Michael Tait, John C. Urschel
{"title":"Maximum spread of graphs and bipartite graphs","authors":"Jane Breen, Alexander W. N. Riasanovsky, Michael Tait, John C. Urschel","doi":"10.1090/cams/14","DOIUrl":null,"url":null,"abstract":"<p>Given any graph <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the spread of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the maximum difference between any two eigenvalues of the adjacency matrix of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs. The first states that for all positive integers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-vertex graph <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that maximizes spread is the join of a clique and an independent set, with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left floor 2 n slash 3 right floor\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⌊<!-- ⌊ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⌋<!-- ⌋ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lfloor 2n/3 \\rfloor</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left ceiling n slash 3 right ceiling\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⌈<!-- ⌈ --></mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">⌉<!-- ⌉ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lceil n/3 \\rceil</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> vertices, respectively. Using techniques from the theory of graph limits and numerical analysis, we prove this claim for all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> sufficiently large. As an intermediate step, we prove an analogous result for a family of operators in the Hilbert space over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L squared left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"script\">L</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathscr {L}^2[0,1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The second conjecture claims that for any fixed <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m less-than-or-equal-to n squared slash 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msup>\n <mml:mi>n</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m \\leq n^2/4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> maximizes spread over all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-vertex graphs with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\">\n <mml:semantics>\n <mml:mi>m</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> edges, then <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is bipartite. We prove an asymptotic version of this conjecture. Furthermore, we construct an infinite family of counterexamples, which shows that our asymptotic solution is tight up to lower-order error terms.</p>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Given any graph G G , the spread of G G is the maximum difference between any two eigenvalues of the adjacency matrix of G G . In this paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs. The first states that for all positive integers n n , the n n -vertex graph G G that maximizes spread is the join of a clique and an independent set, with 2 n / 3 \lfloor 2n/3 \rfloor and n / 3 \lceil n/3 \rceil vertices, respectively. Using techniques from the theory of graph limits and numerical analysis, we prove this claim for all n n sufficiently large. As an intermediate step, we prove an analogous result for a family of operators in the Hilbert space over L 2 [ 0 , 1 ] \mathscr {L}^2[0,1] . The second conjecture claims that for any fixed m n 2 / 4 m \leq n^2/4 , if G G maximizes spread over all n n -vertex graphs with m m edges, then G G is bipartite. We prove an asymptotic version of this conjecture. Furthermore, we construct an infinite family of counterexamples, which shows that our asymptotic solution is tight up to lower-order error terms.

图与二部图的最大扩展
给定任意图G G, G G的扩展是G G的邻接矩阵的任意两个特征值之差的最大值。本文解决了Gregory, Hershkowitz和Kirkland关于图的传播的一对20年猜想。第一个表述了对于所有正整数n n,扩展最大的n n顶点图G G是一个团和一个独立集合的连接,其顶点分别为⌊2n/3⌋\lfloor 2n/3 \rfloor和⌊n/3 \lceil n/3 \rceil。利用图极限理论和数值分析的技术,我们证明了所有n n足够大的情况下的这一说法。作为中间步骤,我们证明了l2 [0,1] \mathscr L{^2[0,1]上Hilbert空间中算子族的一个类似结果。第二个猜想表明,对于任意固定的m≤n 2/4 m }\leq n^2/4,如果G在所有n个n顶点、m个边的图上展开最大,则G是二部的。我们证明了这个猜想的渐近版本。此外,我们构造了一个无限族的反例,这表明我们的渐近解对低阶误差项是紧绷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信