An Entropy evaluation method of hierarchical clustering

Quan Tu, Tianyang Xu, Tingting Fang, Wen Wang, Jie Jiang, Ping Zhu
{"title":"An Entropy evaluation method of hierarchical clustering","authors":"Quan Tu, Tianyang Xu, Tingting Fang, Wen Wang, Jie Jiang, Ping Zhu","doi":"10.1109/DCABES50732.2020.00066","DOIUrl":null,"url":null,"abstract":"Based on the agglomerative hierarchical clustering algorithm, this paper proposes a new information entropy evaluation indicator-Average Discriminant Entropy(ADE), to measure the stability of cluster structure. After that, We designed the corresponding algorithm. In order to verify the validity of the indicator, six heterogeneous artificial data sets were used to simulate. By comparing ADE with other classic evaluation indicators, we found that ADE can obtain the best results under various data sets. Finally, a Monte Carlo experiment on the data with different noise levels proved the robust of ADE.","PeriodicalId":351404,"journal":{"name":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES50732.2020.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the agglomerative hierarchical clustering algorithm, this paper proposes a new information entropy evaluation indicator-Average Discriminant Entropy(ADE), to measure the stability of cluster structure. After that, We designed the corresponding algorithm. In order to verify the validity of the indicator, six heterogeneous artificial data sets were used to simulate. By comparing ADE with other classic evaluation indicators, we found that ADE can obtain the best results under various data sets. Finally, a Monte Carlo experiment on the data with different noise levels proved the robust of ADE.
一种层次聚类的熵评价方法
在聚类分层聚类算法的基础上,提出了一种新的信息熵评价指标——平均判别熵(ADE)来衡量聚类结构的稳定性。然后,我们设计了相应的算法。为了验证指标的有效性,采用6个异构人工数据集进行模拟。通过将ADE与其他经典评价指标进行比较,我们发现ADE在各种数据集下都能获得最好的结果。最后,对不同噪声水平的数据进行蒙特卡罗实验,验证了ADE的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信