GPU implementation for Arabic Sign Language real time recognition using Multi-level Multiplicative Neural Networks

A. S. Elons
{"title":"GPU implementation for Arabic Sign Language real time recognition using Multi-level Multiplicative Neural Networks","authors":"A. S. Elons","doi":"10.1109/ICCES.2014.7030986","DOIUrl":null,"url":null,"abstract":"Sign Language (SL) recognition has been explored for a long time now. Two main aspects of successful SL recognition systems are required: High recognition accuracy and real-time response. This paper shows a contribution in these issues, the first contribution describes a real-time response recognition for Arabic Sign Language (ArSL) based on a Graphics Processing Unit (GPU) implantation. The second contribution exploits Multi-level Multiplicative Neural Network(MMNN) for hand gesture classification. The system architecture mainly depends on two consequent layers of (MMNN), the first layer determines if the signer uses one hand or two hands and the second determines the final class. The experiment was conducted on 200signs and the resultreaches83% recognition accuracy for test data confirming objects dataset offline extendibility. The recognition system is being accelerated using NVIDIA GPU and programming in CUDA.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2014.7030986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sign Language (SL) recognition has been explored for a long time now. Two main aspects of successful SL recognition systems are required: High recognition accuracy and real-time response. This paper shows a contribution in these issues, the first contribution describes a real-time response recognition for Arabic Sign Language (ArSL) based on a Graphics Processing Unit (GPU) implantation. The second contribution exploits Multi-level Multiplicative Neural Network(MMNN) for hand gesture classification. The system architecture mainly depends on two consequent layers of (MMNN), the first layer determines if the signer uses one hand or two hands and the second determines the final class. The experiment was conducted on 200signs and the resultreaches83% recognition accuracy for test data confirming objects dataset offline extendibility. The recognition system is being accelerated using NVIDIA GPU and programming in CUDA.
使用多层乘法神经网络的阿拉伯手语实时识别的GPU实现
手语识别研究已经进行了很长时间。成功的SL识别系统需要两个主要方面:高识别精度和实时响应。本文在这些问题上做出了一些贡献,首先描述了一种基于图形处理单元(GPU)植入的阿拉伯手语(ArSL)实时响应识别。第二个贡献是利用多层乘法神经网络(MMNN)进行手势分类。系统架构主要依赖于两个后续层(MMNN),第一层决定签名者是使用单手还是双手,第二层决定最终类别。在200个标识上进行了实验,测试数据的识别准确率达到83%,验证了目标数据集的离线可扩展性。该识别系统正在使用NVIDIA GPU和CUDA编程进行加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信