Leibniz’s Argument Against Infinite Number

Filippo Costantini
{"title":"Leibniz’s Argument Against Infinite Number","authors":"Filippo Costantini","doi":"10.30965/26664275-02201012","DOIUrl":null,"url":null,"abstract":"This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.","PeriodicalId":433626,"journal":{"name":"Analysis and Explication in 20th Century Philosophy","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Explication in 20th Century Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30965/26664275-02201012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.
莱布尼茨的反无穷论证
本文讨论了莱布尼茨著名的反对无穷数的还原论证。我将表明,虽然论证本身是有效的,但莱布尼茨将其归结为荒谬的假设并没有发挥相关作用。本文的最后一段以复数形式(即通过复数逻辑)重新表述了莱布尼茨的整个论证,以表明即使在没有他所反驳的前提的情况下,也有可能推导出莱布尼茨在论证中使用的矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信