Deep Neural Network Dataset Collection for Optimal Positioning of a Capacitive Compensated Schiffman Phase Shifter

Raymond Gyaang, Ahmed I. Abdul-Rahman, D. A. N. Gookyi, Sung-Joon Jang, Sang-Seol Lee
{"title":"Deep Neural Network Dataset Collection for Optimal Positioning of a Capacitive Compensated Schiffman Phase Shifter","authors":"Raymond Gyaang, Ahmed I. Abdul-Rahman, D. A. N. Gookyi, Sung-Joon Jang, Sang-Seol Lee","doi":"10.1109/ITC-CSCC58803.2023.10212927","DOIUrl":null,"url":null,"abstract":"This paper presents an accurate analysis and design of a Schiffman phase shifter with optimally positioned compensation capacitances for improved performances. The approach synthesized the microstrip coupler's even and odd mode characteristic impedance and its coupling effect to enhance the phase shift with minimal phase deviation. This was achieved by positioning artificial capacitances along the microstrip directional coupler. The new design method is valid for all substrate thicknesses and permittivity thereby overcoming the bandwidth limitation presented by the minimum spacing between the coupled lines in a conventional microstrip directional coupler. The simulation result demonstrated a maximum phase deviation of ± 3° and a maximum return loss of -0.613 dB. The source and load reflections were well below - 10 dB. The obtained dataset is highly accurate and can be used to train a deep neural network for improved phase error and return loss of a Schiffman phase shifter.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"22 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an accurate analysis and design of a Schiffman phase shifter with optimally positioned compensation capacitances for improved performances. The approach synthesized the microstrip coupler's even and odd mode characteristic impedance and its coupling effect to enhance the phase shift with minimal phase deviation. This was achieved by positioning artificial capacitances along the microstrip directional coupler. The new design method is valid for all substrate thicknesses and permittivity thereby overcoming the bandwidth limitation presented by the minimum spacing between the coupled lines in a conventional microstrip directional coupler. The simulation result demonstrated a maximum phase deviation of ± 3° and a maximum return loss of -0.613 dB. The source and load reflections were well below - 10 dB. The obtained dataset is highly accurate and can be used to train a deep neural network for improved phase error and return loss of a Schiffman phase shifter.
电容补偿希夫曼移相器最优定位的深度神经网络数据采集
本文对希夫曼移相器进行了精确的分析和设计,优化了补偿电容的位置以提高其性能。该方法综合了微带耦合器的奇偶特性阻抗及其耦合效应,以最小的相位偏差增强相移。这是通过沿微带定向耦合器定位人工电容实现的。新的设计方法适用于所有衬底厚度和介电常数,从而克服了传统微带定向耦合器中最小耦合线间距所带来的带宽限制。仿真结果表明,最大相位偏差为±3°,最大回波损耗为-0.613 dB。源反射和负载反射远低于- 10 dB。得到的数据集精度高,可用于训练深度神经网络,以改善希夫曼移相器的相位误差和回波损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信