Hybrid.AI: A Learning Search Engine for Large-scale Structured Data

Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov
{"title":"Hybrid.AI: A Learning Search Engine for Large-scale Structured Data","authors":"Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov","doi":"10.1145/3184558.3191600","DOIUrl":null,"url":null,"abstract":"Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.
混合动力车。AI:大规模结构化数据的学习搜索引擎
大数据的多样性对于任何想要在大规模结构化数据集中进行搜索的人来说都是一个重大的障碍。例如,Web上有数百万个可用的表,但最相关的搜索结果不一定与关键字查询完全匹配,因为表示相同信息的方法多种多样。这里我们来描述一下Hybrid。AI,一个用于大规模结构化数据的学习搜索引擎,使用自动生成的机器学习分类器和统一著名对象(ufo)从大规模Web表语料库中返回最相关的搜索结果。我们在这个语料库上评估它,从用户那里收集了99个查询及其结果,并观察到显著的相关性增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信