Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov
{"title":"Hybrid.AI: A Learning Search Engine for Large-scale Structured Data","authors":"Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov","doi":"10.1145/3184558.3191600","DOIUrl":null,"url":null,"abstract":"Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.