An adaptive estimator for registration in augmented reality

Lin Chai, Khoi Nguyen, Bill Hoff, T. Vincent
{"title":"An adaptive estimator for registration in augmented reality","authors":"Lin Chai, Khoi Nguyen, Bill Hoff, T. Vincent","doi":"10.1109/IWAR.1999.803803","DOIUrl":null,"url":null,"abstract":"In augmented reality (AR) systems using head-mounted displays (HMD), it is important to accurately sense the position and orientation (pose) of the user's head with respect to the world, in order that graphical overlays are drawn correctly aligned with real world objects. It is desired to maintain registration dynamically (while the person is moving their head) so that the graphical objects will not appear to lag behind, or swim around, the corresponding real objects. We present an adaptive method for achieving dynamic registration which accounts for variations in the magnitude of the users head motion, based on a multiple model approach. This approach uses the extended Kalman filter to smooth sensor data and estimate position and orientation.","PeriodicalId":435326,"journal":{"name":"Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAR.1999.803803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

In augmented reality (AR) systems using head-mounted displays (HMD), it is important to accurately sense the position and orientation (pose) of the user's head with respect to the world, in order that graphical overlays are drawn correctly aligned with real world objects. It is desired to maintain registration dynamically (while the person is moving their head) so that the graphical objects will not appear to lag behind, or swim around, the corresponding real objects. We present an adaptive method for achieving dynamic registration which accounts for variations in the magnitude of the users head motion, based on a multiple model approach. This approach uses the extended Kalman filter to smooth sensor data and estimate position and orientation.
增强现实中自适应配准估计
在使用头戴式显示器(HMD)的增强现实(AR)系统中,准确地感知用户头部相对于世界的位置和方向(姿势)非常重要,以便绘制出与现实世界物体正确对齐的图形叠加。我们希望动态地保持注册(当人移动他们的头部时),这样图形对象就不会落后于相应的真实对象,或者在周围游动。我们提出了一种基于多模型方法的自适应方法,用于实现动态配准,该方法考虑了用户头部运动幅度的变化。该方法使用扩展卡尔曼滤波平滑传感器数据并估计位置和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信