Improving Estimates of Transitions from Satellite Data: A Hidden Markov Model Approach

Eduardo Souza-Rodrigues, Adrian L. Torchiana, Ted Rosenbaum, Paul Scott
{"title":"Improving Estimates of Transitions from Satellite Data: A Hidden Markov Model Approach","authors":"Eduardo Souza-Rodrigues, Adrian L. Torchiana, Ted Rosenbaum, Paul Scott","doi":"10.1162/rest_a_01301","DOIUrl":null,"url":null,"abstract":"\n Satellite-based image classification facilitates low-cost measurement of the Earth's surface composition. However, misclassified imagery can lead to misleading conclusions about transition processes. We propose a correction for transition rate estimates based on the econometric measurement error literature to extract the signal (truth) from its noisy measurement (satellite-based classifications). No ground-truth data is required in the implementation. Our proposed correction produces consistent estimates of transition rates, confirmed by longitudinal validation data, while transition rates without correction are severely biased. Using our approach, we show how eliminating deforestation in Brazil's Atlantic forest region through 2040 could save $100 billion in CO2 emissions.","PeriodicalId":275408,"journal":{"name":"The Review of Economics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Review of Economics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/rest_a_01301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Satellite-based image classification facilitates low-cost measurement of the Earth's surface composition. However, misclassified imagery can lead to misleading conclusions about transition processes. We propose a correction for transition rate estimates based on the econometric measurement error literature to extract the signal (truth) from its noisy measurement (satellite-based classifications). No ground-truth data is required in the implementation. Our proposed correction produces consistent estimates of transition rates, confirmed by longitudinal validation data, while transition rates without correction are severely biased. Using our approach, we show how eliminating deforestation in Brazil's Atlantic forest region through 2040 could save $100 billion in CO2 emissions.
改进卫星数据过渡估计:一种隐马尔可夫模型方法
基于卫星的图像分类有助于对地球表面成分进行低成本测量。然而,错误分类的图像可能导致关于过渡过程的误导性结论。我们提出了一种基于计量经济学测量误差文献的转换率估计校正方法,以便从噪声测量(基于卫星的分类)中提取信号(真值)。在实施过程中不需要真实数据。我们提出的校正产生了一致的过渡率估计,经纵向验证数据证实,而未经校正的过渡率存在严重偏差。利用我们的方法,我们展示了到2040年消除巴西大西洋森林地区的森林砍伐如何能节省1000亿美元的二氧化碳排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信