Automated synthesis of multitolerance

S. Kulkarni, Ali Ebnenasir
{"title":"Automated synthesis of multitolerance","authors":"S. Kulkarni, Ali Ebnenasir","doi":"10.1109/DSN.2004.1311891","DOIUrl":null,"url":null,"abstract":"We concentrate on automated synthesis of multitolerant programs, i.e., programs that tolerate multiple classes of faults and provide a (possibly) different level of fault-tolerance to each class. We consider three levels of fault-tolerance: (1) failsafe, where in the presence of faults, the synthesized program guarantees safety, (2) nonmasking, where in the presence of faults, the synthesized program recovers to states from where its safety and liveness are satisfied, and (3) masking where in the presence of faults the synthesized program satisfies safety and recovers to states from where its safety and liveness are satisfied. We focus on the automated synthesis of finite-state multitolerant programs in high atomicity model where the program can read and write all its variables in an atomic step. We show that if one needs to add failsafe (respectively, nonmasking) fault-tolerance to one class of faults and masking fault-tolerance to another class of faults then such addition can be done in polynomial time in the state space of the fault-intolerant program. However, if one needs to add failsafe fault-tolerance to one class of faults and nonmasking fault-tolerance to another class of faults then the resulting problem is NP-complete. We find this result to be counterintuitive since adding failsafe and nonmasking fault-tolerance to the same class of faults (which is equivalent to adding masking fault-tolerance to that class of faults) can be done in polynomial time, whereas adding failsafe fault-tolerance to one class of faults and nonmasking fault-tolerance to a different class of faults is NP-complete.","PeriodicalId":436323,"journal":{"name":"International Conference on Dependable Systems and Networks, 2004","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Dependable Systems and Networks, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2004.1311891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We concentrate on automated synthesis of multitolerant programs, i.e., programs that tolerate multiple classes of faults and provide a (possibly) different level of fault-tolerance to each class. We consider three levels of fault-tolerance: (1) failsafe, where in the presence of faults, the synthesized program guarantees safety, (2) nonmasking, where in the presence of faults, the synthesized program recovers to states from where its safety and liveness are satisfied, and (3) masking where in the presence of faults the synthesized program satisfies safety and recovers to states from where its safety and liveness are satisfied. We focus on the automated synthesis of finite-state multitolerant programs in high atomicity model where the program can read and write all its variables in an atomic step. We show that if one needs to add failsafe (respectively, nonmasking) fault-tolerance to one class of faults and masking fault-tolerance to another class of faults then such addition can be done in polynomial time in the state space of the fault-intolerant program. However, if one needs to add failsafe fault-tolerance to one class of faults and nonmasking fault-tolerance to another class of faults then the resulting problem is NP-complete. We find this result to be counterintuitive since adding failsafe and nonmasking fault-tolerance to the same class of faults (which is equivalent to adding masking fault-tolerance to that class of faults) can be done in polynomial time, whereas adding failsafe fault-tolerance to one class of faults and nonmasking fault-tolerance to a different class of faults is NP-complete.
多耐受性的自动合成
我们专注于多容错程序的自动合成,也就是说,程序可以容忍多类错误,并为每个类提供(可能)不同级别的容错。我们考虑了三个级别的容错:(1)故障安全,在存在故障的情况下,合成程序保证安全;(2)非屏蔽,在存在故障的情况下,合成程序从满足其安全性和活动性的状态恢复;(3)屏蔽,在存在故障的情况下,合成程序满足安全性并从满足其安全性和活动性的状态恢复。研究了高原子性模型下有限状态多容程序的自动合成,该模型下的程序可以在原子步骤中读写所有变量。我们证明了如果需要在一类故障中添加故障安全容错,在另一类故障中添加屏蔽容错,那么在容错程序的状态空间中,这种添加可以在多项式时间内完成。然而,如果需要将故障安全容错添加到一类故障中,并将非屏蔽容错添加到另一类故障中,则结果问题是np完全的。我们发现这个结果是违反直觉的,因为将故障安全容错和非屏蔽容错添加到同一类故障中(相当于将屏蔽容错添加到该类故障中)可以在多项式时间内完成,而将故障安全容错添加到一类故障中,将非屏蔽容错添加到另一类故障中是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信