CuPBoP

Ruobing Han, Jun Chen, Bhanu Garg, Jeffrey S. Young, Jaewoong Sim, Hyesoon Kim
{"title":"CuPBoP","authors":"Ruobing Han, Jun Chen, Bhanu Garg, Jeffrey S. Young, Jaewoong Sim, Hyesoon Kim","doi":"10.1145/3572848.3577504","DOIUrl":null,"url":null,"abstract":"CUDA, as one of the most popular choices for GPU programming, can be executed only on NVIDIA GPUs. To execute CUDA on non-NVIDIA devices, researchers have proposed to translate CUDA to other programming languages. However, this approach cannot achieve high coverage due to the challenges in source-to-source translation. We propose a framework, CuPBoP, that executes CUDA programs on non-NVIDIA devices without relying on other programming languages. CuPBoP consists of two parts. The compilation part applies transformations on CUDA host/kernel IRs. The runtime part consists of the runtime libraries for CUDA built-in functions. For the CPU backends, compared with the existing frameworks, CuPBoP achieves the highest coverage on all CPUs that we evaluate (x86, aarch64, RISC-V). We make CuPBoP publicly available to inspire more works in this area 1.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

CUDA, as one of the most popular choices for GPU programming, can be executed only on NVIDIA GPUs. To execute CUDA on non-NVIDIA devices, researchers have proposed to translate CUDA to other programming languages. However, this approach cannot achieve high coverage due to the challenges in source-to-source translation. We propose a framework, CuPBoP, that executes CUDA programs on non-NVIDIA devices without relying on other programming languages. CuPBoP consists of two parts. The compilation part applies transformations on CUDA host/kernel IRs. The runtime part consists of the runtime libraries for CUDA built-in functions. For the CPU backends, compared with the existing frameworks, CuPBoP achieves the highest coverage on all CPUs that we evaluate (x86, aarch64, RISC-V). We make CuPBoP publicly available to inspire more works in this area 1.
CuPBoP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信