Parameter estimation of nonlinear nitrate prediction model using genetic algorithm

Rui Wu, Jose T. Painumkal, J. Volk, Siming Liu, S. Louis, S. Tyler, S. Dascalu, F. Harris
{"title":"Parameter estimation of nonlinear nitrate prediction model using genetic algorithm","authors":"Rui Wu, Jose T. Painumkal, J. Volk, Siming Liu, S. Louis, S. Tyler, S. Dascalu, F. Harris","doi":"10.1109/CEC.2017.7969532","DOIUrl":null,"url":null,"abstract":"We attack the problem of predicting nitrate concentrations in a stream by using a genetic algorithm to minimize the difference between observed and predicted concentrations on hydrologic nitrate concentration model based on a US Geological Survey collected data set. Nitrate plays a significant role in maintaining ecological balance in aquatic ecosystems and any advances in nitrate prediction accuracy will improve our understanding of the non-linear interplay between the factors that impact aquatic ecosystem health. We compare the genetic algorithm tuned model against the LOADEST estimation tool in current use by hydrologists, and against a random forest, generalized linear regression, decision tree, and gradient booted tree and show that the genetic algorithm does statistically significantly better. These results indicate that genetic algorithms are a viable approach to tuning such non-linear, hydrologic models.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We attack the problem of predicting nitrate concentrations in a stream by using a genetic algorithm to minimize the difference between observed and predicted concentrations on hydrologic nitrate concentration model based on a US Geological Survey collected data set. Nitrate plays a significant role in maintaining ecological balance in aquatic ecosystems and any advances in nitrate prediction accuracy will improve our understanding of the non-linear interplay between the factors that impact aquatic ecosystem health. We compare the genetic algorithm tuned model against the LOADEST estimation tool in current use by hydrologists, and against a random forest, generalized linear regression, decision tree, and gradient booted tree and show that the genetic algorithm does statistically significantly better. These results indicate that genetic algorithms are a viable approach to tuning such non-linear, hydrologic models.
基于遗传算法的非线性硝酸盐预测模型参数估计
基于美国地质调查局(US Geological Survey)收集的数据集,利用遗传算法最小化观测值与预测值之间的差异,解决了河流中硝酸盐浓度的预测问题。硝酸盐在维持水生生态系统的生态平衡中起着重要的作用,硝酸盐预测精度的提高将提高我们对影响水生生态系统健康因素之间非线性相互作用的认识。我们将遗传算法调整模型与水文学家目前使用的LOADEST估计工具进行比较,并与随机森林、广义线性回归、决策树和梯度引导树进行比较,结果表明遗传算法在统计上明显更好。这些结果表明,遗传算法是一种可行的方法来调整这种非线性,水文模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信