Aleksandra M. Buchta, A. Kassner, Julia Voß, Tobias Leopold, Julian Petring, L. Diekmann, F. Dencker, M. Wurz
{"title":"Novel Glass-Silicon Emitter Chip for Field Emission Applications","authors":"Aleksandra M. Buchta, A. Kassner, Julia Voß, Tobias Leopold, Julian Petring, L. Diekmann, F. Dencker, M. Wurz","doi":"10.1109/IVNC57695.2023.10188880","DOIUrl":null,"url":null,"abstract":"This work presents the design and fabrication of a novel emitter chip comprising a silicon electron source with pyramidal structures and a glass extraction electrode. The emitters were fabricated using a wafer dicing technique. The glass extraction electrode was manufactured by Laser Induced Deep Etching (LIDE), metallized, and bonded onto the silicon chip using laser-assisted bonding. Current-voltage experiments confirm the excellent performance of the diced emitters, highlighting their potential for a wide range of applications.","PeriodicalId":346266,"journal":{"name":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC57695.2023.10188880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the design and fabrication of a novel emitter chip comprising a silicon electron source with pyramidal structures and a glass extraction electrode. The emitters were fabricated using a wafer dicing technique. The glass extraction electrode was manufactured by Laser Induced Deep Etching (LIDE), metallized, and bonded onto the silicon chip using laser-assisted bonding. Current-voltage experiments confirm the excellent performance of the diced emitters, highlighting their potential for a wide range of applications.