Hanna Kavalionak, E. Carlini, Patrizio Dazzi, L. Ferrucci, M. Mordacchini, M. Coppola
{"title":"Impact of Network Topology on the Convergence of Decentralized Federated Learning Systems","authors":"Hanna Kavalionak, E. Carlini, Patrizio Dazzi, L. Ferrucci, M. Mordacchini, M. Coppola","doi":"10.1109/ISCC53001.2021.9631460","DOIUrl":null,"url":null,"abstract":"Federated learning is a popular framework that enables harvesting edge resources' computational power to train a machine learning model distributively. However, it is not always feasible or profitable to have a centralized server that controls and synchronizes the training process. In this paper, we consider the problem of training a machine learning model over a network of nodes in a fully decentralized fashion. In particular, we look for empirical evidence on how sensitive is the training process for various network characteristics and communication parameters. We present the outcome of several simulations conducted with different network topologies, datasets, and machine learning models.","PeriodicalId":270786,"journal":{"name":"2021 IEEE Symposium on Computers and Communications (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC53001.2021.9631460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Federated learning is a popular framework that enables harvesting edge resources' computational power to train a machine learning model distributively. However, it is not always feasible or profitable to have a centralized server that controls and synchronizes the training process. In this paper, we consider the problem of training a machine learning model over a network of nodes in a fully decentralized fashion. In particular, we look for empirical evidence on how sensitive is the training process for various network characteristics and communication parameters. We present the outcome of several simulations conducted with different network topologies, datasets, and machine learning models.