Dynamics and control of a 3D pendulum

Jinglai Shen, A. Sanyal, N. Chaturvedi, D. Bernstein, H. Mcclamroch
{"title":"Dynamics and control of a 3D pendulum","authors":"Jinglai Shen, A. Sanyal, N. Chaturvedi, D. Bernstein, H. Mcclamroch","doi":"10.1109/CDC.2004.1428650","DOIUrl":null,"url":null,"abstract":"New pendulum models are introduced and studied. The pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force and control forces and moments. Several different pendulum models are developed to analyze properties of the uncontrolled pendulum. Symmetry assumptions are shown to lead to the planar 1D pendulum and to the spherical 2D pendulum models as special cases. The case where the rigid body is asymmetric and the center of mass is distinct from the pivot location leads to the 3D pendulum. Rigid pendulum and multi-body pendulum control problems are proposed. The 3D pendulum models provide a rich source of examples for nonlinear dynamics and control, some of which are similar to simpler pendulum models and some of which are completely new.","PeriodicalId":254457,"journal":{"name":"2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2004.1428650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

New pendulum models are introduced and studied. The pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force and control forces and moments. Several different pendulum models are developed to analyze properties of the uncontrolled pendulum. Symmetry assumptions are shown to lead to the planar 1D pendulum and to the spherical 2D pendulum models as special cases. The case where the rigid body is asymmetric and the center of mass is distinct from the pivot location leads to the 3D pendulum. Rigid pendulum and multi-body pendulum control problems are proposed. The 3D pendulum models provide a rich source of examples for nonlinear dynamics and control, some of which are similar to simpler pendulum models and some of which are completely new.
三维摆的动力学与控制
介绍并研究了新的钟摆模型。钟摆由一个刚体组成,由一个固定的支点支撑,有三个旋转自由度。钟摆受重力、控制力和力矩的作用。建立了几种不同的摆模型来分析非受控摆的特性。对称假设表明,导致平面一维摆和球形二维摆模型作为特殊情况。刚体不对称且质心与支点位置不同的情况下产生三维摆。提出了刚性摆和多体摆的控制问题。三维摆模型为非线性动力学和控制提供了丰富的实例来源,其中一些类似于简单的摆模型,有些是全新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信