{"title":"Combining few neural networks for effective secondary structure prediction","authors":"K. Guimaraes, J. Melo, George D. C. Cavalcanti","doi":"10.1109/BIBE.2003.1188981","DOIUrl":null,"url":null,"abstract":"The prediction of secondary structure is treated with a simple and efficient method. Combining only three neural networks, an average Q/sub 3/ accuracy prediction by residues of 75.93% is achieved. This value is better than the best results reported on the same test and training database, CB396, using the same validation method. For a second database, RS126, an average Q/sub 3/ accuracy of 74.13% is attained, which is better than each individual method, being defeated only by CONSENSUS, a rather intricate engine, which is a combination of several methods. The networks are trained with RPROP an efficient variation of the back-propagation algorithm. Five combination rules are applied independently afterwards. Each one increases the accuracy of prediction by at least 1%, due to the fact that each network used converges to a different local minimum. The Product rule derives the best results. The predictor described here can be accessed at http://biolab.cin.ufpe.br/tools/.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The prediction of secondary structure is treated with a simple and efficient method. Combining only three neural networks, an average Q/sub 3/ accuracy prediction by residues of 75.93% is achieved. This value is better than the best results reported on the same test and training database, CB396, using the same validation method. For a second database, RS126, an average Q/sub 3/ accuracy of 74.13% is attained, which is better than each individual method, being defeated only by CONSENSUS, a rather intricate engine, which is a combination of several methods. The networks are trained with RPROP an efficient variation of the back-propagation algorithm. Five combination rules are applied independently afterwards. Each one increases the accuracy of prediction by at least 1%, due to the fact that each network used converges to a different local minimum. The Product rule derives the best results. The predictor described here can be accessed at http://biolab.cin.ufpe.br/tools/.