The optimal vibrational shear stress for bovine endothelial cell proliferation

Ching-Wen Li, Jau-Liang Chen, Chia-Ching Wu, Gou-Jen Wang
{"title":"The optimal vibrational shear stress for bovine endothelial cell proliferation","authors":"Ching-Wen Li, Jau-Liang Chen, Chia-Ching Wu, Gou-Jen Wang","doi":"10.1109/NEMS.2012.6196875","DOIUrl":null,"url":null,"abstract":"In this study, a novel method for quantitative analysis of the optimal shear stress for better cell growth using a micro-positioning piezoelectric lead zirconate titanate (PZT) stage is proposed. Compared with the conventional fluidic sheer stress, a micro- positioning PZT stage not only provides cultured cells with laminar flow, but also is able to generate large shear stress gradient by precise reciprocating motions. Bovine endothelial cells (BEC) are than cultured on different scaffolds for investigation of cell proliferation under different vibrational excitations by a PZT stage. The fluorescence labeling is adopted to estimate the adhesive area of a cultured cell. It is observed that cells cultured on different artificial scaffolds adjusted their adhesion area to respond to the shear stress induced stimulus. Optimal growth curves for BECs on different scaffolds are drawn. The optimal shear stress for the proliferation of BECs on different scaffolds is found to be closely identical. It is suggested that a micro-positioning PZT stage may be a more cost and time effective solution than the nanostructured scaffold approach for the enhancement of cell growth.","PeriodicalId":156839,"journal":{"name":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2012.6196875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel method for quantitative analysis of the optimal shear stress for better cell growth using a micro-positioning piezoelectric lead zirconate titanate (PZT) stage is proposed. Compared with the conventional fluidic sheer stress, a micro- positioning PZT stage not only provides cultured cells with laminar flow, but also is able to generate large shear stress gradient by precise reciprocating motions. Bovine endothelial cells (BEC) are than cultured on different scaffolds for investigation of cell proliferation under different vibrational excitations by a PZT stage. The fluorescence labeling is adopted to estimate the adhesive area of a cultured cell. It is observed that cells cultured on different artificial scaffolds adjusted their adhesion area to respond to the shear stress induced stimulus. Optimal growth curves for BECs on different scaffolds are drawn. The optimal shear stress for the proliferation of BECs on different scaffolds is found to be closely identical. It is suggested that a micro-positioning PZT stage may be a more cost and time effective solution than the nanostructured scaffold approach for the enhancement of cell growth.
牛内皮细胞增殖的最佳振动剪切应力
在这项研究中,提出了一种利用微定位压电锆钛酸铅(PZT)平台定量分析最佳剪应力的新方法。与传统的流体绝对应力相比,微定位PZT平台不仅可以为培养细胞提供层流,还可以通过精确的往复运动产生较大的剪切应力梯度。在不同的支架上培养牛内皮细胞(BEC),研究PZT阶段不同振动刺激下的细胞增殖情况。采用荧光标记法估计培养细胞的粘附面积。观察到在不同人工支架上培养的细胞对剪应力诱导的刺激可调节其粘附面积。绘制了BECs在不同支架上的最佳生长曲线。不同支架上BECs增殖的最佳剪切应力基本相同。这表明,微定位PZT阶段可能是一种比纳米结构支架方法更具成本和时间效益的增强细胞生长的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信