Multi-cut light field depth estimation

Thoma Papadhimitri, O. Urfalioglu
{"title":"Multi-cut light field depth estimation","authors":"Thoma Papadhimitri, O. Urfalioglu","doi":"10.1109/ACPR.2015.7486518","DOIUrl":null,"url":null,"abstract":"We investigate the problem of depth map estimation of a scene from 4D light-field data. Unlike prior work, we process all the input images (or sub-images) of the light-field. Indeed, for each point of the scene, different depth candidates are estimated by considering all possible 3D light-field cuts instead of only 2, i.e. the horizontal and vertical one. Then, the optimal candidates are chosen by finding the labeling with minimum energy. The main motivation of our approach is that by processing multiple cuts of the light-field, the matching ambiguities are reduced. Our meta-method is of broad interest as it can be applied and enhance the performance of various state-of-the-art light-field depth estimation techniques. For the sake of demonstration we apply it on the work from Wanner and Goldluecke [19] and significantly improve their results.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the problem of depth map estimation of a scene from 4D light-field data. Unlike prior work, we process all the input images (or sub-images) of the light-field. Indeed, for each point of the scene, different depth candidates are estimated by considering all possible 3D light-field cuts instead of only 2, i.e. the horizontal and vertical one. Then, the optimal candidates are chosen by finding the labeling with minimum energy. The main motivation of our approach is that by processing multiple cuts of the light-field, the matching ambiguities are reduced. Our meta-method is of broad interest as it can be applied and enhance the performance of various state-of-the-art light-field depth estimation techniques. For the sake of demonstration we apply it on the work from Wanner and Goldluecke [19] and significantly improve their results.
多切口光场深度估计
研究了基于四维光场数据的景深图估计问题。与以前的工作不同,我们处理光场的所有输入图像(或子图像)。事实上,对于场景的每个点,通过考虑所有可能的3D光场切割来估计不同的深度候选者,而不仅仅是2个,即水平和垂直的一个。然后,通过寻找能量最小的标签来选择最优候选标签。我们的方法的主要动机是通过处理光场的多个切割,减少匹配的模糊性。我们的元方法是广泛的兴趣,因为它可以应用和提高各种最先进的光场深度估计技术的性能。为了证明,我们将其应用于Wanner和Goldluecke[19]的工作,并显著改进了他们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信