Inferring Searcher Attention by Jointly Modeling User Interactions and Content Salience

Dmitry Lagun, Eugene Agichtein
{"title":"Inferring Searcher Attention by Jointly Modeling User Interactions and Content Salience","authors":"Dmitry Lagun, Eugene Agichtein","doi":"10.1145/2766462.2767745","DOIUrl":null,"url":null,"abstract":"Modeling and predicting user attention is crucial for interpreting search behavior. The numerous applications include quantifying web search satisfaction, estimating search quality, and measuring and predicting online user engagement. While prior research has demonstrated the value of mouse cursor data and other interactions as a rough proxy of user attention, precisely predicting where a user is looking on a page remains a challenge, exacerbated in Web pages beyond the traditional search results. To improve attention prediction on a wider variety of Web pages, we propose a new way of modeling searcher behavior data by connecting the user interactions to the underlying Web page content. Specifically, we propose a principled model for predicting a searcher's gaze position on a page, that we call Mixture of Interactions and Content Salience (MICS). To our knowledge, our model is the first to effectively combine user interaction data, such as mouse cursor and scrolling positions, with the visual prominence, or salience, of the page content elements. Extensive experiments on multiple popular types of Web content demonstrate that the proposed MICS model significantly outperforms previous approaches to searcher gaze prediction that use only the interaction information. Grounding the observed interactions to the underlying page content provides a general and robust approach to user attention modeling, enabling more powerful tool for search behavior interpretation and ultimately search quality improvements.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Modeling and predicting user attention is crucial for interpreting search behavior. The numerous applications include quantifying web search satisfaction, estimating search quality, and measuring and predicting online user engagement. While prior research has demonstrated the value of mouse cursor data and other interactions as a rough proxy of user attention, precisely predicting where a user is looking on a page remains a challenge, exacerbated in Web pages beyond the traditional search results. To improve attention prediction on a wider variety of Web pages, we propose a new way of modeling searcher behavior data by connecting the user interactions to the underlying Web page content. Specifically, we propose a principled model for predicting a searcher's gaze position on a page, that we call Mixture of Interactions and Content Salience (MICS). To our knowledge, our model is the first to effectively combine user interaction data, such as mouse cursor and scrolling positions, with the visual prominence, or salience, of the page content elements. Extensive experiments on multiple popular types of Web content demonstrate that the proposed MICS model significantly outperforms previous approaches to searcher gaze prediction that use only the interaction information. Grounding the observed interactions to the underlying page content provides a general and robust approach to user attention modeling, enabling more powerful tool for search behavior interpretation and ultimately search quality improvements.
通过用户交互和内容显著性联合建模来推断搜索者的注意力
建模和预测用户注意力对于解释搜索行为至关重要。众多的应用包括量化网络搜索满意度,估计搜索质量,以及测量和预测在线用户参与度。虽然先前的研究已经证明了鼠标光标数据和其他交互作为用户注意力的粗略代理的价值,但准确预测用户在页面上查看的位置仍然是一个挑战,在传统搜索结果之外的Web页面中更是如此。为了在更广泛的网页上改进注意力预测,我们提出了一种新的方法,通过将用户交互与底层网页内容联系起来,对搜索者行为数据进行建模。具体来说,我们提出了一个原则性模型来预测搜索者在页面上的凝视位置,我们称之为交互和内容显著性的混合(MICS)。据我们所知,我们的模型是第一个有效地将用户交互数据(如鼠标光标和滚动位置)与页面内容元素的视觉突出性或显著性结合起来的模型。在多种流行的Web内容类型上进行的大量实验表明,所提出的MICS模型显著优于先前仅使用交互信息的搜索者凝视预测方法。将观察到的交互与底层页面内容结合起来,为用户注意力建模提供了一种通用的、健壮的方法,为搜索行为解释提供了更强大的工具,并最终提高了搜索质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信