Soft computing forecasting of cardiovascular and respiratory incidents based on climate change scenarios

Vardis-Dimitris Anezakis, Georgios Mallinis, L. Iliadis, Konstantinos Demertzis
{"title":"Soft computing forecasting of cardiovascular and respiratory incidents based on climate change scenarios","authors":"Vardis-Dimitris Anezakis, Georgios Mallinis, L. Iliadis, Konstantinos Demertzis","doi":"10.1109/EAIS.2018.8397174","DOIUrl":null,"url":null,"abstract":"Climate change is one of the most serious threats for modern societies. It contributes to the fluctuation of air pollutants' concentrations which affects the number of respiratory and cardiovascular incidents. This research initially determines the contributing meteorological features for the maximization of air pollutants on a seasonal basis. In the second stage it employs Fuzzy Cognitive Maps (FCMs) to model and forecast the level of morbidity and mortality due to the above health problems, which are intensified from the changes in minimum and maximum meteorological values. This research effort takes into consideration the climate change scenarios for the period up to 2100. The assessment of the proposed model is done on historical meteorological, pollution and nursing data from the prefecture of Thessaloniki, for the period 2000–2013.","PeriodicalId":368737,"journal":{"name":"2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2018.8397174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Climate change is one of the most serious threats for modern societies. It contributes to the fluctuation of air pollutants' concentrations which affects the number of respiratory and cardiovascular incidents. This research initially determines the contributing meteorological features for the maximization of air pollutants on a seasonal basis. In the second stage it employs Fuzzy Cognitive Maps (FCMs) to model and forecast the level of morbidity and mortality due to the above health problems, which are intensified from the changes in minimum and maximum meteorological values. This research effort takes into consideration the climate change scenarios for the period up to 2100. The assessment of the proposed model is done on historical meteorological, pollution and nursing data from the prefecture of Thessaloniki, for the period 2000–2013.
基于气候变化情景的心血管和呼吸事件软计算预测
气候变化是现代社会面临的最严重威胁之一。它有助于空气污染物浓度的波动,从而影响呼吸和心血管事件的数量。本研究初步确定了在季节基础上对空气污染物最大化有贡献的气象特征。在第二阶段,它采用模糊认知图(fcm)来模拟和预测由于上述健康问题造成的发病率和死亡率水平,这些健康问题由于最小和最大气象值的变化而加剧。这项研究工作考虑了到2100年期间的气候变化情景。对拟议模型的评估是根据塞萨洛尼基州2000-2013年期间的历史气象、污染和护理数据完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信