A new algorithm for transitive closures and computation of recursion in relational databases

Yangjun Chen
{"title":"A new algorithm for transitive closures and computation of recursion in relational databases","authors":"Yangjun Chen","doi":"10.1109/IV.2003.1217981","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm for computing recursive closures. The main idea behind this algorithm is tree labeling and graph decomposition, based on which the transitive closure of a directed graph can be computed in O(e/spl middot/d/sub max//spl middot/d/sub out/) time and in O(n/spl middot/d/sub max//spl middot/d/sub out/) space, where n is the number of the nodes of the graph, e is the numbers of the edges, d/sub max/ is the maximal indegree of the nodes, and d/sub out/ is the average outdegree of the nodes. Especially, this method can be used to efficiently compute recursive relationships of a directed graph in a relational environment.","PeriodicalId":259374,"journal":{"name":"Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2003.1217981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a new algorithm for computing recursive closures. The main idea behind this algorithm is tree labeling and graph decomposition, based on which the transitive closure of a directed graph can be computed in O(e/spl middot/d/sub max//spl middot/d/sub out/) time and in O(n/spl middot/d/sub max//spl middot/d/sub out/) space, where n is the number of the nodes of the graph, e is the numbers of the edges, d/sub max/ is the maximal indegree of the nodes, and d/sub out/ is the average outdegree of the nodes. Especially, this method can be used to efficiently compute recursive relationships of a directed graph in a relational environment.
关系型数据库中传递闭包和递归计算的新算法
我们提出了一种计算递归闭包的新算法。该算法的主要思想是树标记和图分解,在此基础上可以在O(e/spl middot/d/sub max//spl middot/d/sub out/)时间和O(n/spl middot/d/sub max//spl middot/d/sub out/)空间中计算有向图的传递闭包,其中n为图的节点数,e为边数,d/sub max/为节点的最大度,d/sub out/为节点的平均出度。特别是,该方法可以有效地计算关系环境下有向图的递归关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信