A Markovian model for contour grouping

Sabine Urago, J. Zerubia, M. Berthod
{"title":"A Markovian model for contour grouping","authors":"Sabine Urago, J. Zerubia, M. Berthod","doi":"10.1109/ICPR.1994.576357","DOIUrl":null,"url":null,"abstract":"Describes an algorithm which restores images of incomplete contours using a Markovian model. In order to complete the boundaries, a criterion is defined and introduced in an energy function, which has to be optimized. A deterministic relaxation algorithm ICM (\"iterated conditional mode\") is implemented to minimize this energy function. It generates a configuration in which the contours are reconstructed. Several examples of real image restoration have been tested on a SIMD computer (Connection Machine CM 200). This algorithm allows one to fill up large gaps and to get a better contour grouping.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Describes an algorithm which restores images of incomplete contours using a Markovian model. In order to complete the boundaries, a criterion is defined and introduced in an energy function, which has to be optimized. A deterministic relaxation algorithm ICM ("iterated conditional mode") is implemented to minimize this energy function. It generates a configuration in which the contours are reconstructed. Several examples of real image restoration have been tested on a SIMD computer (Connection Machine CM 200). This algorithm allows one to fill up large gaps and to get a better contour grouping.
轮廓分组的马尔可夫模型
描述一种使用马尔可夫模型恢复不完整轮廓图像的算法。为了完成边界,定义了一个准则,并在能量函数中引入该准则,对该准则进行优化。实现了一种确定性松弛算法ICM(“迭代条件模式”)来最小化该能量函数。它生成一个重构轮廓的结构。在一台SIMD计算机(连接机CM 200)上测试了几个真实图像恢复的示例。该算法可以填补较大的空白,并得到更好的轮廓分组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信