Constrained optimization problem solving using estimation of distribution algorithms

P. A. Simionescu, D. Beale, G. Dozier
{"title":"Constrained optimization problem solving using estimation of distribution algorithms","authors":"P. A. Simionescu, D. Beale, G. Dozier","doi":"10.1109/CEC.2004.1330870","DOIUrl":null,"url":null,"abstract":"Two variants of estimation of distribution algorithm (EDA) are tested solving several continuous optimization problems with constraints. Numerical experiments are conducted and comparison is made between constraint handling using several types of penalty and repair operators in case of both elitist and nonelitist implementation of the EDA's. Graphical display and animations of representative runs of the best and worst performers proved useful in enhancing the understanding of how such algorithms work.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Two variants of estimation of distribution algorithm (EDA) are tested solving several continuous optimization problems with constraints. Numerical experiments are conducted and comparison is made between constraint handling using several types of penalty and repair operators in case of both elitist and nonelitist implementation of the EDA's. Graphical display and animations of representative runs of the best and worst performers proved useful in enhancing the understanding of how such algorithms work.
用分布估计算法求解约束优化问题
对分布估计算法(EDA)的两种变体进行了测试,以解决若干带约束的连续优化问题。进行了数值实验,比较了在精英和非精英情况下使用几种惩罚算子和修复算子的约束处理。最佳和最差表现的代表性运行的图形显示和动画证明有助于增强对此类算法如何工作的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信