Enhance Face Recognition Using Time-series Face Images

H. Chen, G. Peng, Kai Chi Chang, J. Lin, Yi-Hsin Chen, Yu-Kai Lin, Chao-Yi Huang, Jong-Chen Chen
{"title":"Enhance Face Recognition Using Time-series Face Images","authors":"H. Chen, G. Peng, Kai Chi Chang, J. Lin, Yi-Hsin Chen, Yu-Kai Lin, Chao-Yi Huang, Jong-Chen Chen","doi":"10.1109/ICCE-TW52618.2021.9603226","DOIUrl":null,"url":null,"abstract":"In recent years, with the gradual development of computer vision-related technologies, the face recognition-related technology has gradually become one of the mainstream security system options. In this study, we use MTCNN[1] for preprocessing and LRCNs[2] network structure and time-series face image data to try to solve the problem of unrecognizable user due to face blocking or face angle, when a frame is unrecognizable, we can still compare the user's characteristics with other frames and determine their identity.","PeriodicalId":141850,"journal":{"name":"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW52618.2021.9603226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, with the gradual development of computer vision-related technologies, the face recognition-related technology has gradually become one of the mainstream security system options. In this study, we use MTCNN[1] for preprocessing and LRCNs[2] network structure and time-series face image data to try to solve the problem of unrecognizable user due to face blocking or face angle, when a frame is unrecognizable, we can still compare the user's characteristics with other frames and determine their identity.
利用时间序列人脸图像提高人脸识别能力
近年来,随着计算机视觉相关技术的逐步发展,人脸识别相关技术逐渐成为安防系统的主流方案之一。在本研究中,我们利用 MTCNN[1] 进行预处理,并利用 LRCNs[2] 网络结构和时间序列人脸图像数据,尝试解决由于人脸遮挡或人脸角度等原因造成的用户无法识别的问题,当某一帧无法识别时,我们仍然可以将该用户的特征与其他帧进行比较,从而确定其身份。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信