Fourth order computational method for two parameters singularly perturbed boundary value problem using non-polynomial cubic spline

K. Phaneendra, G. Mahesh
{"title":"Fourth order computational method for two parameters singularly perturbed boundary value problem using non-polynomial cubic spline","authors":"K. Phaneendra, G. Mahesh","doi":"10.1504/IJCSM.2019.10022400","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a fourth order finite difference scheme using non-polynomial cubic spline for the solution of two parameters singularly perturbed two-point boundary value problem having dual boundary layer on a uniform mesh. In this method, the first order derivatives in the non-polynomial cubic spline finite difference scheme are replaced by the higher order finite differences to get the discretisation equation for the problem. The discretisation equation is solved by the tridiagonal solver discrete invariant imbedding. The proposed method is analysed for convergence and a fourth order rate of convergence is proved. The numerical results are compared with exact solutions and the outcomes of other existing numerical methods.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2019.10022400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we proposed a fourth order finite difference scheme using non-polynomial cubic spline for the solution of two parameters singularly perturbed two-point boundary value problem having dual boundary layer on a uniform mesh. In this method, the first order derivatives in the non-polynomial cubic spline finite difference scheme are replaced by the higher order finite differences to get the discretisation equation for the problem. The discretisation equation is solved by the tridiagonal solver discrete invariant imbedding. The proposed method is analysed for convergence and a fourth order rate of convergence is proved. The numerical results are compared with exact solutions and the outcomes of other existing numerical methods.
非多项式三次样条法求解双参数奇摄动边值问题的四阶计算方法
本文利用非多项式三次样条给出了均匀网格上具有双边界层的双参数奇摄动两点边值问题的四阶有限差分格式。该方法将非多项式三次样条有限差分格式中的一阶导数替换为高阶有限差分格式,得到问题的离散化方程。离散化方程采用三对角线求解器离散不变嵌入法求解。分析了该方法的收敛性,证明了该方法具有四阶收敛速度。数值结果与精确解和其他现有数值方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信