Recursive Least Squares Parameter Estimation for DC Fault Detection and Localization

Kellen O’Shea, B. Tsao, L. Herrera, Chad Miller
{"title":"Recursive Least Squares Parameter Estimation for DC Fault Detection and Localization","authors":"Kellen O’Shea, B. Tsao, L. Herrera, Chad Miller","doi":"10.1109/NAECON46414.2019.9057890","DOIUrl":null,"url":null,"abstract":"The advancement of modern aircraft seeks to place a higher priority on the electrical power systems to execute flight operations. Transitioning to aircraft with a larger dependence on these systems is advantageous because they increase reliability, maintainability, and cost efficiency. This requires an intelligent power system that is capable of not only powering the aircraft at ideal conditions, but also detecting faults and autonomously redistributing power to flight-critical electrical loads. This paper investigates how to detect parallel faults using recursive least squares estimation. Results indicate how estimation is affected by system variables.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The advancement of modern aircraft seeks to place a higher priority on the electrical power systems to execute flight operations. Transitioning to aircraft with a larger dependence on these systems is advantageous because they increase reliability, maintainability, and cost efficiency. This requires an intelligent power system that is capable of not only powering the aircraft at ideal conditions, but also detecting faults and autonomously redistributing power to flight-critical electrical loads. This paper investigates how to detect parallel faults using recursive least squares estimation. Results indicate how estimation is affected by system variables.
递推最小二乘参数估计用于直流故障检测与定位
现代飞机的进步寻求将电力系统置于执行飞行操作的更高优先级。过渡到更依赖这些系统的飞机是有利的,因为它们增加了可靠性、可维护性和成本效率。这需要一个智能电力系统,不仅能够在理想条件下为飞机供电,而且能够检测故障并自动将电力重新分配给飞行关键的电气负载。本文研究了用递推最小二乘估计检测并行故障的方法。结果表明估计是如何受到系统变量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信